Ammonia as an accelerator of tumor necrosis factor alpha-induced apoptosis of gastric epithelial cells in Helicobacter pylori infection.

نویسندگان

  • M Igarashi
  • Y Kitada
  • H Yoshiyama
  • A Takagi
  • T Miwa
  • Y Koga
چکیده

The mechanism by which Helicobacter pylori induces apoptosis remains unclear. In a previous study using biopsy samples, we found a significant correlation between the urease activity of an H. pylori strain and the apoptosis level induced by this strain. Therefore, in this study, we investigated whether urease and/or the ammonia generated by urease can induce apoptosis. Human gastric epithelial cell lines were cocultured with H. pylori, and the levels of apoptosis and ammonia production were measured. The medium was supplemented (or not supplemented) with urea and cytokines. While a large amount of ammonia (>30 mM) accumulated in the coculture containing urease-positive H. pylori and urea, no significant degree of apoptosis occurred. In the presence of tumor necrosis factor alpha (TNF-alpha), however, a marked acceleration of apoptosis was found in this coculture. Such enhancement of apoptosis was also induced by the addition of 4 to 8 mM ammonia to the cell culture without either H. pylori or urea but containing TNF-alpha. These results suggested that ammonia accelerates cytokine-induced apoptosis in gastric epithelial cells, while ammonia or urease molecules alone are unable to induce a significant degree of apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of tumour necrosis factor (TNF) induced apoptosis by soluble TNF receptors in Helicobacter pylori infection.

BACKGROUND Tumour necrosis factor (TNF) is a predominant cytokine produced in the gastric mucosa of patients with Helicobacter pylori infection. TNF induces apoptosis in a variety of cells. The soluble TNF receptors (sTNF-Rs) can be divided into sTNF-RI and sTNF-RII, both of which inhibit TNF activity. However, their precise mechanisms remain unclear. AIM To investigate the role of sTNF-Rs in...

متن کامل

Role of Helicobacter pylori on differential expression of angiogenic markers in gastric adenocarcinoma

Animal studies showed that male gastric tissues respond more rapidly to Helicobacter pylori (H.pylori) infection but the possible mechanisms remained unclear. There is no data about gender specific activity of Androgen receptor (AR) as an independent unfavorable prognostic factor in gastric cancer and its interactions with H.pylori and angiogenesis in both genders. To compare the pathogenesis o...

متن کامل

Tumor necrosis factor alpha and interleukin 1beta up-regulate gastric mucosal Fas antigen expression in Helicobacter pylori infection.

Fas-mediated gastric mucosal apoptosis is gaining attention as a cause of tissue damage due to Helicobacter pylori infection. We explored the effects of H. pylori directly, and the effects of the inflammatory environment established subsequent to H. pylori infection, on Fas-mediated apoptosis in a nontransformed gastric mucosal cell line (RGM-1). Exposure to H. pylori-activated peripheral blood...

متن کامل

Role of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer

Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that has been introduced as a cause of mucosal inflammation and gastric cancer. The most important pathogenic factors are VacA and CagA, which are associated with increased disease severity in clinical strains. Autophagy is a protected lysosomal degradation pathway degrading cytoplasmic content and is important in host...

متن کامل

Helicobacter pylori Protein JHP0290 Binds to Multiple Cell Types and Induces Macrophage Apoptosis via Tumor Necrosis Factor (TNF)-Dependent and Independent Pathways

Activated macrophages at the sub-mucosal space play a major role in generating innate immune responses during H. pylori infection. Final disease outcome largely depends on how H. pylori and bacterium-derived products modulate macrophage responses. Here, we report that JHP0290, a functionally unknown protein from H. pylori, regulates macrophage functions. Recombinant purified JHP0290 (rJHP0290) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 69 2  شماره 

صفحات  -

تاریخ انتشار 2001