Monitoring white blood cell mitochondrial aldehyde dehydrogenase activity: implications for nitrate therapy in humans.
نویسندگان
چکیده
Recent animal data suggest that reduced lipoic acid (LA) prevents oxidative inhibition of the nitrate bioactivating enzyme, the mitochondrial aldehyde dehydrogenase (ALDH-2), and that pentaerythritol tetranitrate (PETN) does not induce nitrate tolerance because of its intrinsic antioxidative properties, thereby preserving ALDH-2 activity. We sought to determine whether ALDH-2 activity in circulating white blood cells (WBCs) can be used to monitor nitrate tolerance and whether LA can prevent nitroglycerin tachyphylaxis in humans. Eight healthy male volunteers received, in randomized order, a single dose of glyceryl trinitrate (GTN; 0.8 mg), PETN (80 mg), or GTN plus LA (600 mg) orally. GTN (30 min) and PETN (120 min) administration lead to a comparable dilation of the brachial artery (15 +/- 1%). In contrast to PETN, acute GTN treatment resulted in a 60% decrease in WBC ALDH-2 activity (high-performance liquid chromatography), 30% reduction of nitrate bioactivation, and 25% decrease in serum antioxidant capacity (fluorescence assay), which all were prevented by pretreatment with LA. Mechanistic studies in rats identified oxidative stress, ALDH-2 inactivation, and vascular dysfunction as common features in acute and chronic nitrate tolerance. Treatment with GTN, but not PETN, acutely inhibits ALDH-2 activity and nitrate bioactivation in healthy volunteers. These effects were prevented by LA pretreatment, emphasizing the role of oxidative stress-triggered ALDH-2 dysfunction. Assessment of WBC ALDH-2 activity could be used as an easily accessible marker for the detection of nitroglycerin-induced tachyphylaxis in humans and may be of high clinical interest because recent data suggest that ALDH-2 activity correlates with protection from ischemic heart damage in infarct models.
منابع مشابه
Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-Glutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan.
OBJECTIVE Continuous administration of nitroglycerin (GTN) causes tolerance and endothelial dysfunction by inducing reactive oxygen species (ROS) production from various enzymatic sources, such as mitochondria, NADPH oxidase, and an uncoupled endothelial nitric oxide synthase (eNOS). In the present study, we tested the effects of type 1 angiotensin (AT(1))-receptor blockade with telmisartan on ...
متن کاملAldehyde dehydrogenase 2 plays a role in the bioactivation of nitroglycerin in humans.
OBJECTIVE Nitrates are used widely in clinical practice. However, the mechanism underlying the bioactivation of nitrates to release NO remains unclear. Recent animal data suggest that mitochondrial aldehyde dehydrogenase (ALDH2) plays a central role in nitrate bioactivation, but its role in humans is not known. We investigated the role of ALDH2 in the vascular effects of nitroglycerin (NTG) in ...
متن کاملMitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice
BACKGROUND Chronic therapy with nitroglycerin (GTN) results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS). According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) play an important role for the devel...
متن کاملVascular bioactivation of nitroglycerin is catalyzed by cytosolic aldehyde dehydrogenase-2.
RATIONALE According to general view, aldehyde dehydrogenase-2 (ALDH2) catalyzes the high-affinity pathway of vascular nitroglycerin (GTN) bioactivation in smooth muscle mitochondria. Despite having wide implications to GTN pharmacology and raising many questions that are still unresolved, mitochondrial bioactivation of GTN in blood vessels is still lacking experimental support. OBJECTIVE In t...
متن کاملHeme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates.
OBJECTIVE Nitrate tolerance is likely attributable to an increased production of reactive oxygen species (ROS) leading to an inhibition of the mitochondrial aldehyde dehydrogenase (ALDH-2), representing the nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN) bioactivating enzyme, and to impaired nitric oxide bioactivity and signaling. We tested whether differences in their capacity to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 330 1 شماره
صفحات -
تاریخ انتشار 2009