Death domain mutagenesis of KILLER/DR5 reveals residues critical for apoptotic signaling.
نویسندگان
چکیده
The Fas/tumor necrosis factor (TNF)/TRAIL receptors signal death through a cytoplasmic death domain (DD) containing six alpha-helices with positively charged helix 2 interacting with negatively charged helix 3 of another DD. DD mutation occurs in head/neck and lung cancer (TRAIL receptor KILLER/DR5) and in lpr mice (Fas). We examined the apoptotic potential of known KILLER/DR5 lung tumor-derived mutants (n = 6) and DD mutants (n = 18) generated based on conservation with DR4, Fas, Fas-associated death domain (FADD), and tumor necrosis factor receptor 1 (TNFR1). With the exception of Arg-330 required in Fas or FADD for aggregation or for TNFR1 cytotoxicity, surprisingly major loss-of-function KILLER/DR5 alleles (W325A, L334A (lpr-like), I339A, and W360A) contained hydrophobic residues. Loss-of-function of I339A (highly conserved) has not been reported in DDs. Charged residue mutagenesis revealed the following points. 1) E326A, conserved in DR4, is dispensable for death; the homologous residue is positively charged in Fas, TNFR1, and FADD and is critical for DD interactions. 2) K331A, D336A, E338A, K340A, K343A, and D351A have partial loss-of-function suggesting multiple charges stabilize receptor-adapter interactions. Analysis of the tumor-derived KILLER/DR5 mutants revealed the following. 1) L334F has partial loss-of-function versus L334A, whereas E338K has major loss-of-function versus E338A, examples where alanine and tumor-specific substitutions have divergent phenotypes. 2) Unexpectedly, S324F, E326K, K386N, and D407Y have no loss-of-function with tumor-specific or alanine substitutions. Loss-of-function KILLER/DR5 mutants were deficient in recruitment of FADD and caspase 8 to TRAIL death-inducing signaling complexes. The results reveal determinants within KILLER/DR5 for death signaling and drug design.
منابع مشابه
Functional Analysis of Trail Protein Crystallographic Data: Selectivity and Apoptosis of Tumor Cells
There are several tumor necrosis factor proteins (TNF) responsible for signaling cell death (TNF-R1, DR3, DR4, DR5, and DR6). The binding of TNF related apoptosis-inducing ligand (TRAIL) to some of these receptors initiates the cell death pathway and causes apoptosis. TRAIL is a homotrimer which binds three like death receptors (Figure 1). This leads to trimerization of the death receptors and ...
متن کاملDeath receptors 4 and 5 activate Nox1 NADPH oxidase through riboflavin kinase to induce reactive oxygen species-mediated apoptotic cell death.
Stimulation of the proapoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, death receptors 4 (DR4) and 5 (DR5), conventionally induces caspase-dependent apoptosis in tumor cells. Here we report that stimulation of DR4 and/or DR5 by the agonistic protein KD548-Fc, an Fc-fused DR4/DR5 dual-specific Kringle domain variant, activates plasma membrane-associated ...
متن کاملUnderstanding the Role of the Death Receptor 5/FADD/caspase-8 Death Signaling in Cancer Metastasis.
The normal function of the extrinsic apoptotic pathway is to mediate apoptosis. Thus, this pathway is generally recognized to be critical in host immune surveillance against cancer. However, many studies have suggested that some key components in this pathway including Fas, death receptor 5 (DR5), Fas-associated death domain (FADD) and caspase-8 may contribute to cancer growth or metastasis. Ou...
متن کاملCrystal structure of TRAF1 TRAF domain and its implications in the TRAF1-mediated intracellular signaling pathway
TNF-receptor associated factor (TRAF) proteins are key adaptor molecules containing E3 ubiquitin ligase activity that play a critical role in immune cell signaling. TRAF1 is a unique family of TRAF lacking the N-terminal RING finger domain. TRAF1 is an important scaffold protein that participates in TNFR2 signaling in T cells as a negative or positive regulator via direct interaction with TRAF2...
متن کاملBlocking TRAIL-DR5 signaling with soluble DR5 alleviates acute kidney injury in a severely burned mouse model.
Acute kidney injury (AKI) predicts high mortality in severely burned patients. Apoptosis plays a significant role during AKI; however, the apoptotic mechanisms underlying AKI induced by burn injury are not clear. Here, we report a critical role for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-Death receptor 5 (DR5) signaling in the pathogenesis of AKI. C57BL/6 male mice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 18 شماره
صفحات -
تاریخ انتشار 2001