Mechanisms of GABAergic Homeostatic Plasticity
نویسنده
چکیده
Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons): following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.
منابع مشابه
Reconciling Homeostatic and Use-Dependent Plasticity in the Context of Somatosensory Deprivation
The concept of homeostatic plasticity postulates that neurons maintain relatively stable rates of firing despite changing inputs. Homeostatic and use-dependent plasticity mechanisms operate concurrently, although they have different requirements for induction. Depriving central somatosensory neurons of their primary activating inputs reduces activity and results in compensatory changes that fav...
متن کاملGABA(A) receptors, gephyrin and homeostatic synaptic plasticity.
Homeostatic synaptic plasticity describes the changes in synapse gain and function that occur in response to global changes in neuronal activity to maintain the stability of neuronal networks. In this review, we argue that a coordinated regulation of excitatory and inhibitory synaptic transmission is essential for maintaining CNS function while allowing both global and local changes in synaptic...
متن کاملActivity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways
Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeo...
متن کاملShort-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex
Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within the critical period [1-3]. Resting GABAergic inhibition is necessary to trigger ocular dominance plasticity and to modulate the onset and offset of the critical period [4, 5]. GABAergic inhibition also plays a crucial role in neuroplasticity of adult animals: the balance between excitation and ...
متن کاملGABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential.
Homeostatic synaptic plasticity ensures that networks maintain specific levels of activity by regulating synaptic strength in a compensatory manner. When spontaneous network activity was blocked in vivo in the embryonic spinal cord, compensatory increases in excitatory GABAergic synaptic inputs were observed. This homeostatic synaptic strengthening was observed as an increase in the amplitude o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011