Cyclic Structure of Dynamical Systems Associated with 3 x + d Extensions of Collatz Problem

نویسندگان

  • E. G. Belaga
  • M. Mignotte
چکیده

We study here, from both theoretical and experimental points of view, the cyclic structures, both general and primitive, of dynamical systems Dd generated by iterations of the functions Td acting, for all d ≥ 1 relatively prime to 6, on positive integers : Td : N −→ N; Td(n) = { n 2 , if n is even; 3n+d 2 , if n is odd. In the case d = 1, the properties of the system D = D1 are the subject of the well-known 3x + 1 conjecture. For every one of 6667 systems Dd, 1 ≤ d ≤ 19999, we calculate its (complete, as we argue) list of primitive cycles. We unite in a single conceptual framework of primitive memberships, and we experimentally confirm three primitive cycles conjectures of Jeff Lagarias. An in-deep analysis of the diophantine formulae for primitive cycles, together with new rich experimental data, suggest several new conjectures, theoretically studied and experimentally confirmed in the present paper. As a part of this program, we prove a new upper bound to the number of primitive cycles of a given oddlength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ω-rewriting the Collatz problem

The Collatz problem is comprised of two distinct, separate questions: existence of eventually periodic Collatz reductions with a nontrivial period, and existence of period-free Collatz reductions. This paper introduces a few distinct, related formalizations of the Collatz dynamics as term rewriting systems, using elementary concepts from the theory of state transition dynamics. Some of the subj...

متن کامل

The Structure of the Collatz Graph; A Recursive Production of the Predecessor Tree; Proof of the Collatz 3x+1 Conjecture

Several major steps develop a proof of the Collatz conjecture. (1)The overall structure of the Collatz graph is a binary predecessor tree whose nodes contain residue sets, {c[d]}. (2)The residue sets are deployed as extensions (right descents) and l.d.a.s (left descents). (3)Generation of a large initial sample of the tree was accomplished using a recursive computer program. (4)The program outp...

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS

‎In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$‎ ‎for finite discrete $X$ with at least two elements‎, ‎infinite countable set $Gamma$ and‎ ‎arbitrary map $varphi:GammatoGamma$‎, ‎the following statements are equivalent‎: ‎ - the dynamical system $(X^Gamma,sigma_varphi)$ is‎ Li-Yorke chaotic;‎ - the dynamical system $(X^Gamma,sigma_varphi)$ has‎ an scr...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008