Probability Density of Determinants of Random Matrices

نویسنده

  • Giovanni M. Cicuta
چکیده

In this brief note the probability density of a random real, complex and quaternion determinant is rederived using the singular values. The behaviour of suitably rescaled random determinants is studied in the limit of infinite order of the matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics

Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...

متن کامل

Acceptable random variables in non-commutative probability spaces

Acceptable random variables are defined in noncommutative (quantum) probability spaces and some of probability inequalities for these classes  are obtained. These results are a generalization of negatively orthant dependent random variables in probability theory. Furthermore, the obtained results can be used for random matrices.

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

On Determinants of Random Symmetric Matrices over Zm

We determine the probability that a random n by n symmetric matrix over {1, 2, . . . ,m} has determinant divisible by m.

متن کامل

Random matrices, random polynomials and Coulomb systems

It is well known that the joint probability density of the eigenvalues of Gaussian ensembles of random matrices may be interpreted as a Coulomb gas. We review these classical results for hermitian and complex random matrices, with special attention devoted to electrostatic analogies. We also discuss the joint probability density of the zeros of polynomials whose coefficients are complex Gaussia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008