Stability of Ideal Lattices from Quadratic Number Fields
نویسنده
چکیده
We study semi-stable ideal lattices coming from quadratic number fields. We prove that all ideal lattices of trace type from rings of integers of imaginary quadratic number fields are semi-stable. For real quadratic fields, we demonstrate infinite families of semi-stable and unstable ideal lattices, establishing explicit conditions on the canonical basis of an ideal that ensure stability; in particular, our result implies that an ideal lattice of trace type coming from a real quadratic field is semi-stable with positive probability. We also briefly discuss the connection between stability and well-roundedness of Euclidean lattices.
منابع مشابه
On Well-rounded Ideal Lattices - Ii
We study well-rounded lattices which come from ideals in quadratic number fields, generalizing some recent results of the first author with K. Petersen [8]. In particular, we give a characterization of ideal well-rounded lattices in the plane and show that a positive proportion of real and imaginary quadratic number fields contains ideals giving rise to well-rounded lattices.
متن کاملON WELL - ROUNDED IDEAL LATTICES 3 Theorem 1
We investigate a connection between two important classes of Euclidean lattices: well-rounded and ideal lattices. A lattice of full rank in a Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. We consider lattices coming from full rings of integers in number fields, proving that only cyclotomic fields give rise to well-rounded lattices. We further study ...
متن کاملOn Well-rounded Ideal Lattices
We investigate a connection between two important classes of Euclidean lattices: well-rounded and ideal lattices. A lattice of full rank in a Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. We consider lattices coming from full rings of integers in number fields, proving that only cyclotomic fields give rise to well-rounded lattices. We further study ...
متن کاملOn Integral Well-rounded Lattices in the Plane
We investigate distribution of integral well-rounded lattices in the plane, producing a complete parameterization of the set of their similarity classes by solutions of the family of Pell-type Diophantine equations of the form x2 +Dy2 = z2 where D > 0 is squarefree. We then apply our results to the study of the greatest minimal norm and the highest signal-to-noise ratio on the set of such latti...
متن کاملThe fifteen theorem for universal Hermitian lattices over imaginary quadratic fields
We will introduce a method to get all universal Hermitian lattices over imaginary quadratic fields Q( √ −m) for all m. For each imaginary quadratic field Q( √ −m), we obtain a criterion on universality of Hermitian lattices: if a Hermitian lattice L represents 1, 2, 3, 5, 6, 7, 10, 13, 14 and 15, then L is universal. We call this the fifteen theorem for universal Hermitian lattices. Note that t...
متن کامل