Solutions to the ellipsoidal Clairaut constant and the inverse geodetic problem by numerical integration
نویسنده
چکیده
Wederive computational formulas for determining the Clairaut constant, i.e. the cosine of themaximum latitude of the geodesic arc, from two given points on the oblate ellipsoid of revolution. In all cases the Clairaut constant is unique. The inverse geodetic problem on the ellipsoid is to determine the geodesic arc between and the azimuths of the arc at the given points. We present the solution for the xed Clairaut constant. If the given points are not(nearly) antipodal, each azimuth and location of the geodesic is unique, while for the xed points in the ”antipodal region”, roughly within 36”.2 from the antipode, there are two geodesics mirrored in the equator and with complementary azimuths at each point. In the special case with the given points located at the poles of the ellipsoid, all meridians are geodesics. The special role played by the Clairaut constant and the numerical integrationmake thismethod different from others available in the literature.
منابع مشابه
A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملGeodesic equations and their numerical solutions in geodetic and Cartesian coordinates on an oblate spheroid
The direct geodesic problem on an oblate spheroid is described as an initial value problem and is solved numerically in geodetic and Cartesian coordinates. The geodesic equations are formulated by means of the theory of differential geometry. The initial value problem under consideration is reduced to a system of first-order ordinary differential equations, which is solved using a numerical met...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملOn the accurate numerical evaluation of geodetic convolution integrals
In the numerical evaluation of geodetic convolution integrals, whether by quadrature or discrete/fast Fourier transform (D/FFT) techniques, the integration kernel is sometimes computed at the centre of the discretised grid cells. For singular kernels a common case in physical geodesy this approximation produces significant errors near the computation point, where the kernel changes rapidly acro...
متن کاملApplication of different inverse methods for combination of vS and vGPR data to estimate porosity and water saturation
Inverse problem is one of the most important problems in geophysics as model parameters can be estimated from the measured data directly using inverse techniques. In this paper, applying different inverse methods on integration of S-wave and GPR velocities are investigated for estimation of porosity and water saturation. A combination of linear and nonlinear inverse problems are solved. Linear ...
متن کامل