Detecting vegetation leaf water content using reflectance in the optical domain
نویسندگان
چکیده
This paper outlines the first part of a series of research studies to investigate the potential and approaches for using optical remote sensing to assess vegetation water content. It first analyzes why most methods used as approximations of vegetation water content (such as vegetation stress indices, estimation of degree of curing and chlorophyll content) are not suitable for retrieving water content at leaf level. It then documents the physical basis supporting the use of remote sensing to directly detect vegetation water content in terms of Equivalent Water Thickness (EWT) at leaf level. Using laboratory measurements, the radiative transfer model PROSPECT and a sensitivity analysis, it shows that shortwave infrared (SWIR) is sensitive to EWT but cannot be used alone to retrieve EWT because two other leaf parameters (internal structure and dry matter) also influence leaf reflectance in the SWIR. A combination of SWIR and NIR (only influenced by these two parameters) is necessary to retrieve EWT at leaf level. These results set the basis towards establishing operational techniques for the retrieval of EWT at top-of-canopy and top-of-atmospheric levels. D 2001 Elsevier Science Inc. All rights reserved.
منابع مشابه
Determination of Leaf Relative Water Content of Two Genotypes of Sesame Using Visible and Near- Infrared (VIS/NIR) Spectrometry to Detect Drought Stress
Relative water content (RWC) in plants is one of the most important biochemical parameters and its deficiency limits efficiency of photosynthesis and crop productivity. The scientific reports on using spectroscopy in detecting drought stress for sesame plants are very rare. In this study, the possibility of identifying water stress in two sensitive (Naz-Takshakhe) and resistant (Yekta) genotype...
متن کاملEstimation of Vegetation Water Content with MODIS data and Radiative Transfer Simulation
Radiative-transfer physically-based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such...
متن کاملWater content estimation in vegetation with MODIS reflectance data and model inversion methods
Statistical and radiative-transfer physically based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of wat...
متن کاملEstimating live fuel moisture content from remotely sensed reflectance
Fuel moisture content (FMC) is used in forest fire danger models to characterise the moisture status of the foliage. FMC expresses the amount of water in a leaf relative to the amount of dry matter and differs from measures of leaf water content which express the amount of water in a leaf relative to its area. FMC is related to both leaf water content and leaf dry matter content, and the relati...
متن کاملThe Effect of Leaf Stacking on Leaf Reflectance and Vegetation Indices Measured by Contact Probe during the Season
The aims of the study were: (i) to compare leaf reflectance in visible (VIS) (400-700 nm), near-infrared (NIR) (740-1140 nm) and short-wave infrared (SWIR) (2000-2400 nm) spectral ranges measured monthly by a contact probe on a single leaf and a stack of five leaves (measurement setup (MS)) of two broadleaved tree species during the vegetative season; and (ii) to test if and how selected vegeta...
متن کامل