There is no EPTAS for two-dimensional knapsack

نویسندگان

  • Ariel Kulik
  • Hadas Shachnai
چکیده

In the d-dimensional knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The goal is to select a subset of the items of maximum total profit such that the sum of all vectors is bounded by the bin capacity in each dimension. It is well known that, unless P = NP , there is no fully polynomial time approximation scheme for d-dimensional knapsack, already for d = 2. The best known result is a polynomial time approximation scheme (PTAS) due to Frieze and Clarke (European J. of Operational Research, 100–109, 1984 ) for the case where d ≥ 2 is some fixed constant. A fundamental open question is whether the problem admits an efficient PTAS (EPTAS). In this paper we resolve this question by showing that there is no EPTAS for d-dimensional knapsack, already for d = 2, unless W [1] = FPT . Furthermore, we show that unless all problems in SNP are solvable in sub-exponential time, there is no approximation scheme for two-dimensional knapsack whose running time is f(1/ε)|I| √ , for any function f . Together, the two results suggest that a significant improvement over the running time of the scheme of Frieze and Clarke is unlikely to exist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster approximation schemes for the two-dimensional knapsack problem

An important question in theoretical computer science is to determine the best possible running time for solving a problem at hand. For geometric optimization problems, we often understand their complexity on a rough scale, but not very well on a finer scale. One such example is the two-dimensional knapsack problem for squares. There is a polynomial time (1 + )-approximation algorithm for it (i...

متن کامل

APPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING

In this paper, an interesting and easy method to solve the multi-dimensional  knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA).  Finally, ite...

متن کامل

Parameterized approximation scheme for the multiple knapsack problem

The multiple knapsack problem (MKP) is a well-known generalization of the classical knapsack problem. We are given a set A of n items and set B of m bins (knapsacks) such that each item a ∈ A has a size size(a) and a profit value profit(a), and each bin b ∈ B has a capacity c(b). The goal is to find a subset U ⊂ A of maximum total profit such that U can be packed into B without exceeding the ca...

متن کامل

Solving a bi-objective project capital budgeting problem using a fuzzy multi-dimensional knapsack

In this paper, the researchers have proposed a multi-dimensional knapsack model for project capital budgeting problem in uncertain situation which has been modeled through fuzzy sets. The optimistic and pessimistic situations were considered and associated deterministic models were yielded. Numerical example has been supplied toillustrate the performance of proposed model. The results were prom...

متن کامل

EPTAS for Max Clique on Disks and Unit Balls

We propose a polynomial-time algorithm which takes as input a finite set of points of R3 and compute, up to arbitrary precision, a maximum subset with diameter at most 1. More precisely, we give the first randomized EPTAS and deterministic PTAS for Maximum Clique in unit ball graphs. Our approximation algorithm also works on disk graphs with arbitrary radii. Almost three decades ago, an elegant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2010