Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion.

نویسندگان

  • Andrey V Kuznetsov
  • Stefan Schneeberger
  • Rüdiger Seiler
  • Gerald Brandacher
  • Walter Mark
  • Wolfgang Steurer
  • Valdur Saks
  • Yves Usson
  • Raimund Margreiter
  • Erich Gnaiger
چکیده

Mitochondria play a critical role in myocardial cold ischemia-reperfusion (CIR) and induction of apoptosis. The nature and extent of mitochondrial defects and cytochrome c (Cyt c) release were determined by high-resolution respirometry in permeabilized myocardial fibers. CIR in a rat heart transplant model resulted in variable contractile performance, correlating with the decline of ADP-stimulated respiration. Respiration with succinate or N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (substrates for complexes II and IV) was partially restored by added Cyt c, indicating Cyt c release. In contrast, NADH-linked respiration (glutamate+malate) was not stimulated by Cyt c, owing to a specific defect of complex I. CIR but not cold ischemia alone resulted in the loss of NADH-linked respiratory capacity, uncoupling of oxidative phosphorylation and Cyt c release. Mitochondria depleted of Cyt c by controlled hypoosmotic shock provided a kinetic model of homogeneous Cyt c depletion. Comparison to Cyt c control of respiration in CIR-injured myocardial fibers indicated heterogeneity of Cyt c release. The complex I defect and uncoupling correlated with heterogeneous Cyt c release, the extent of which increased with loss of cardiac performance. These results demonstrate a complex pattern of multiple mitochondrial damage as determinants of CIR injury of the heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled reperfusion after hypothermic heart preservation inhibits mitochondrial permeability transition-pore opening and enhances functional recovery.

We investigated whether low-pressure reperfusion may attenuate postischemic contractile dysfunction, limits necrosis and apoptosis after a prolonged hypothermic ischemia, and inhibits mitochondrial permeability transition-pore (MPTP) opening. Isolated rats hearts (n = 72) were exposed to 8 h of cold ischemia and assigned to the following groups: 1) reperfusion with low pressure (LP = 70 cmH(2)O...

متن کامل

Reperfusion, not simulated ischemia, initiates intrinsic apoptosis injury in chick cardiomyocytes.

Although ischemia-reperfusion (I/R) can initiate apoptosis, the timing and contribution of the mitochondrial/cytochrome c apoptosis death pathway to I/R injury is unclear. We studied the timing of cytochrome c release during I/R and whether subsequent caspase activation contributes to reperfusion injury in confluent chick cardiomyocytes. One-hour simulated ischemia followed by 3-h reperfusion r...

متن کامل

MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia-reperfusion injury.

Manganese superoxide dismutase (MnSOD) is one of the main antioxidant enzymes that protects the heart against ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) is a short period of ischemia-reperfusion that reduces subsequent prolonged I/R injury. Although MnSOD localizes in mitochondria, the immediate subcellular distribution of MnSOD in heart after IPC and I/R has not been stu...

متن کامل

The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice.

Release of mitochondrial cytochrome c into the cytosol is a critical step in apoptosis. We have reported that early release of cytochrome c in vivo occurs after permanent focal cerebral ischemia (FCI) and is mediated by the mitochondrial antioxidant manganese superoxide dismutase (SOD). However, the role of reactive oxygen species produced after ischemia-reperfusion in the mitochondrial apoptos...

متن کامل

Upregulation of Bcl-2 through caspase-3 inhibition ameliorates ischemia/reperfusion injury in rat cardiac allografts.

BACKGROUND Oxidative stress after ischemia/reperfusion of cardiac allografts leads to cytokine production. Bcl-2, an inhibitor of apoptosis, also has strong antioxidant properties. Caspase-3 is known to cleave bcl-2. This study tests the hypothesis that bcl-2 is downregulated while tumor necrosis factor-alpha (TNF-alpha) levels increase after cardiac transplantation. Furthermore, the use of cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 286 5  شماره 

صفحات  -

تاریخ انتشار 2004