Cheeger constants, structural balance, and spectral clustering analysis for signed graphs
نویسندگان
چکیده
We introduce a family of multi-way Cheeger-type constants {h k , k = 1, 2, . . . , N} on a signed graph Γ = (G, σ) such that h k = 0 if and only if Γ has k balanced connected components. These constants are switching invariant and bring together in a unified viewpoint a number of important graph-theoretical concepts, including the classical Cheeger constant, the non-bipartiteness parameter of Desai and Rao, the bipartiteness ratio of Trevisan, the dual Cheeger constant of Bauer and Jost on unsigned graphs, and the line index of imbalance of Harary (also called the frustration index) on signed graphs. We then propose a corresponding spectral clustering algorithm for finding k almost-balanced subgraphs, each defining a sparse cut. We find that the proper metric for the clustering algorithm is the metric on a real projective space. Remarkably, this algorithm includes the traditional spectral clustering algorithm on unsigned graphs via spherical metrics as a special case. We verify the algorithm theoretically by proving higher-order signed Cheeger inequalities, and signed improved Cheeger inequalities concerning higher-order spectral gaps. We also prove estimates of the extremal eigenvalues of signed Laplace matrix in terms of number of signed triangles (3-cycles).
منابع مشابه
Spectral graph theory: Cheeger constants and discrepancy∗
In this third talk we will discuss properties related to edge expansion. In particular, we will define the Cheeger constant (which measures how easy it is to cut off a large piece of the graph) and state the Cheeger inequalities. We also will define and discuss discrepancy for undirected and directed graphs. We also state the Perron-Frobenius Theorem which is a useful tool in spectral graph the...
متن کاملSpectral Analysis of Signed Graphs for Clustering, Prediction and Visualization
We study the application of spectral clustering, prediction and visualization methods to graphs with negatively weighted edges. We show that several characteristic matrices of graphs can be extended to graphs with positively and negatively weighted edges, giving signed spectral clustering methods, signed graph kernels and network visualization methods that apply to signed graphs. In particular,...
متن کاملCheeger constants, growth and spectrum of locally tessellating planar graphs
In this article, we study relations between the local geometry of planar graphs (combinatorial curvature) and global geometric invariants, namely the Cheeger constants and the exponential growth. We also discuss spectral applications.
متن کاملOn spectral partitioning of signed graphs
Classical spectral clustering is based on a spectral decomposition of a graph Laplacian, obtained from a graph adjacency matrix representing positive graph edge weights describing similarities of graph vertices. In signed graphs, the graph edge weights can be negative to describe disparities of graph vertices, for example, negative correlations in the data. Negative weights lead to possible neg...
متن کاملSigned Laplacian for spectral clustering revisited
Classical spectral clustering is based on a spectral decomposition of a graph Laplacian, obtained from a graph adjacency matrix representing positive graph edge weights describing similarities of graph vertices. In signed graphs, the graph edge weights can be negative to describe disparities of graph vertices, for example, negative correlations in the data. Negative weights lead to possible neg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1411.3530 شماره
صفحات -
تاریخ انتشار 2014