Oxygen free radicals in acute pancreatitis of the rat.

نویسندگان

  • M H Schoenberg
  • M Büchler
  • M Gaspar
  • A Stinner
  • M Younes
  • I Melzner
  • B Bültmann
  • H G Beger
چکیده

This study aimed to assess the role of oxygen free radicals in acute pancreatitis. Acute pancreatitis was induced in rats by infusion of the CCK-analogue cerulein (5 micrograms/kg per hour) for 30 minutes, 3.5 hours, and 12 hours. After the infusion, serum enzymes and conjugated tissue dienes and malondialdehyde were measured and tissue samples were subjected to electron and light microscopy. Electron microscopy after 30 minutes showed moderate intracellular alterations. After 3.5 hours of cerulein infusion interstitial oedema and intravascular margination of granulocytes in the pancreatic gland were seen. After 12 hours histological evaluation showed pronounced zymogen degranulation, extensive tissue necrosis, and migration of granulocytes into the tissue. Amylase and lipase activities increased 15 and 35-fold respectively during this time. After 30 minutes of cerulein infusion conjugated dienes and malondialdehyde increased, they reached their peak after 3.5 hours and decreased to normal values after 12 hours. Treatment with superoxide dismutase (100,000 U/kg/hour) and catalase (400,000 U/kg/hour) either before or after the start of the cerulein infusion prevented lipid peroxidation and reduced zymogen degranulation and tissue necrosis. Tissue oedema and inflammatory response, however, were not affected in any of the treated rats. Oxygen free radicals are instrumental in the development of acute pancreatitis. Even after its onset, scavenger treatment reduced the tissue damage normally observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Leucoyte-Derived Free Oxygen Radicals in the Pathogenesis of Experimental Acute Pancreatitis

The role of free oxygen radicals in experimental acute pancreatitis induced by common bile duct ligation was investigated by measuring malondialdehyde levels in the rat pancreas. Also, the potential role of leucocytes as the source of free oxygen radicals was tested by inducing leukopenia with methotrexate. The malondialdehyde levels in the control, pancreatitis and pancreatitis + methotrexate ...

متن کامل

Allopurinol attenuates caerulein induced acute pancreatitis in the rat.

Oxygen derived free radicals have been implicated in the pathogenesis of acute pancreatitis in numerous animal models of the disease. The xanthine oxidase inhibitor allopurinol has been shown to attenuate pancreatic damage in canine and mouse models of acute pancreatitis presumably by preventing the generation of cytotoxic superoxide anions. We therefore examined whether allopurinol could atten...

متن کامل

Malondialdehyde and superoxide dismutase as potential markers of severity in acute pancreatitis.

CONTEXT Release of oxygen free radicals is increased in acute pancreatitis, but whether this can be used to predict clinical severity is not known. OBJECTIVE This study assesses whether plasma concentrations of malondialdehyde (a marker of lipid peroxidation) and superoxide dismutase (an oxygen free radical scavenger) can be used to predict severity of acute pancreatitis. PATIENTS Fifty-one...

متن کامل

Specific interaction of pancreatic elastase and leucocytes to produce oxygen radicals and its implication in pancreatitis.

Many previous reports using experimental animal models of pancreatitis have suggested that oxygen free radicals play an important part in initiation and development of pancreatitis. Infiltration of inflammatory cells--that is, neutrophils, lymphocytes, and monocytes--has been seen in damaged pancreatic glands of animal models and patients with pancreatitis. As neutrophils are known to be the hi...

متن کامل

Role of oxygen and nitrogen free radicals in diabetes-induced atherosclerosis and effects of exercise on it

Free radical can be defined as a molecule or molecular fragments containing unpaired electron in the outer orbital, which react with nearby molecules to get stability. There are two types of them in the body: oxygen free radicals and nitrogen free radicals. Our body has an antioxidant defense system which prevents accumulation of these radicals. There is a balance between free radical produc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gut

دوره 31 10  شماره 

صفحات  -

تاریخ انتشار 1990