Chiral metamaterials: enhancement and control of optical activity and circular dichroism
نویسندگان
چکیده
The control of the optical activity and ellipticity of a medium has drawn considerable attention due to the recent developments in metamaterial design techniques and a deeper understanding of the light matter interaction in composite metallic structures. Indeed, recently proposed designs of metaatoms have enabled the realisation of materials with unprecedented chiral optical properties e.g. strong optical activity, broadband optical activity, and nondispersive zero ellipticity. Combining chiral metamaterials with nonlinear materials has opened up new possibilities in the field of nonlinear chirality as well as provided the foundation for switchable chiral devices. Furthermore, chirality together with hyperbolicity can be used to realise new exciting materials such as photonic topological insulators. In this review, we will outline the fundamental principles of chiral metamaterials and report on recent progress in providing the foundations for promising applications of switchable chiral metamaterials.
منابع مشابه
Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملDevelopment of Bottom - Up Chemical Approaches to 3 - D Negative Index
The objective of this project was to develop a new approach to 3-D metamaterials. A key step was developing materials with large optical activity. A unique combination of "bottom up" and "top down" approaches to produce nanostructures was successfully applied. Multiscale modeling was used to design chiral polymers. A series of chiral polymers, based on thiophene, fluorene, and fluorene-quinoxal...
متن کاملExperimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials
Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral m...
متن کاملHighly tunable optical activity in planar achiral terahertz metamaterials.
Using terahertz time domain spectroscopy we demonstrate tunable polarization rotation and circular dichroism in intrinsically non-chiral planar terahertz metamaterials without twofold rotational symmetry. The observed effect is due to extrinsic chirality arising from the mutual orientation of the metamaterial plane and the propagation direction of the incident terahertz wave.
متن کاملMeta-Chirality: Fundamentals, Construction and Applications
Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative ...
متن کامل