Limits of relatively hyperbolic groups and Lyndon’s completions

نویسنده

  • Olga Kharlampovich
چکیده

In this paper we describe finitely generated groups H universally equivalent (with constants from G in the language) to a given torsion-free relatively hyperbolic group G with free abelian parabolics. It turns out that, as in the free group case, the group H embeds into the Lyndon’s completion G of the group G, or, equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of G containing G is universally equivalent to G. Since finitely generated groups universally equivalent to G are precisely the finitely generated groups discriminated by G the result above gives a description of finitely generated groups discriminated by G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fillings, Finite Generation and Direct Limits of Relatively Hyperbolic Groups

We examine the relationship between finitely and infinitely generated relatively hyperbolic groups. We observe that direct limits of relatively hyperbolic groups are in fact direct limits of finitely generated relatively hyperbolic groups. We use this (and known results) to prove the Strong Novikov Conjecture for the groups constructed by Osin in [17].

متن کامل

The Triviality Problem for Profinite Completions

We prove that there is no algorithm that can determine whether or not a finitely presented group has a non-trivial finite quotient; indeed, it remains undecidable among the fundamental groups of compact, non-positively curved square complexes. We deduce that many other properties of groups are undecidable. For hyperbolic groups, there cannot exist algorithms to determine largeness, the existenc...

متن کامل

Thick metric spaces , relative hyperbolicity , and quasi - isometric rigidity

We study the geometry of non-relatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with non-relatively hyperbolic peripheral subgroups is a quasi-isometry invariant...

متن کامل

ar X iv : m at h / 05 12 59 2 v 4 [ m at h . G T ] 1 J ul 2 00 6 THICK METRIC SPACES , RELATIVE HYPERBOLICITY , AND QUASI - ISOMETRIC RIGIDITY

We study the geometry of nonrelatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with nonrelatively hyperbolic peripheral subgroups is a quasi-isometry invariant. ...

متن کامل

Reservoir Performance Assessment Based on Intelligent Well Technology

The main challenge facing the oil industry is to reduce development costs while accelerating recovery with maximizing reserves. One of the key enabling technologies in this area is intelligent well completions. Intelligent well technology (IWT) is a relatively new technology that has been adopted by many operators in recent years to improve oil and gas recovery. Intelligent well completions emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009