Printed Square-shape UWB Antenna with Dual Band-Notched Characteristics

نویسنده

  • Parul N. Jha
چکیده

Ultra Wideband (UWB) is a new emerging and promising technology as it can accommodate higher data over a large bandwidth. we proposed a Printed Square-shape UWB Antenna With Dual Band-Notched Characteristics. A simple square patch antenna has been fed through a 50 Ω microstrip feedline .A rectangular notch has been etched on the ground plane to reject the interference of WIMAX Band (3GHZ-4.7GHZ) and U-shape slot has been etched on the radiator to reject the interference of WLAN Band(5GHZ-6GHZ).The size of proposed antenna is 66mm(Lsub) x 66mm(Wsub) x 1.59mm (H) which is quite compact. A large bandwidth from 1.6 GHz to 9.2 GHz with VSWR less than 2, except 3GHz-4.7GHzand 5GHz-6GHz have been achieved by simulating on IE3D software. The proposed antenna is successfully fabricated on the FR4 substrate with εr = 4.43. Keywords—Rectangular-shaped notch, U-shape Slot, Dual band-notched characteristics, WiMAX, ultra wideband (UWB) Application. __________________________________________________*****_________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi Attribute Analysis of a Novel Compact UWB Antenna with Via-fed Elements for Dual Band Notch Function (RESEARCH NOTE)

A compact microstrip-fed antenna with dual notched bands is proposed. First, a simple basic configuration is presented for Ultra Wide Band (UWB) applications and then the dual band notched structure is extended from the UWB one. The basic structure of the UWB antenna consists of a simple square radiating patch and a ground plane with a wide square slot on back of the substrate. A semi-circle sh...

متن کامل

An Improved CPW-Fed Printed UWB Antenna With Controllable Band-notched Functions

A newly designed printed slot antenna is presented that incorporates variable two band-notched functions for ultra-wideband (UWB) applications. The two band notches of this coplanar waveguide (CPW) fed antenna are achieved by an M-shaped slot (MSS) embedded in the radiating element and a C-shaped strip (CSS) close to ground plane, therefore two very narrow rejected properties in the wireless lo...

متن کامل

A Novel Small E–Ring Shaped Monopole Antenna with Dual Band-Notch Function for UWB Wireless Communications

This paper presents an E-ring shaped printed monopole antenna for UWB applications with dual notched bands performance. In order to generate single frequency band notch function, we applied a U-ring shaped monopole antenna, and by inserting a rectangular ring in the centre of it an E-ring shaped radiating patch created and a dual band-notch function can be achieved. The measured bandwidth of th...

متن کامل

Design of A Compact CPW-FED UWB Antenna with WiMAX and WLAN Band-Notched Characteristic Evaluated in AHP Framework

In this article, we present a new design of a coplanar waveguide fed (CPW-fed) ultra-wideband (UWB) antenna with dual band-notched characteristics. Two notched frequency bands are achieved by using two inverted U-shaped stepped impedance resonators. The proposed antenna can operate from 2.82 to 11 GHz (118%), defined by VSWR< 2, except two notched bands around 3.5 GHz (WiMAX) and 5.5 GHz (WLAN)...

متن کامل

Design of a CPW-fed Dual Band-Notched Planar Wideband Antenna for UWB Applications

Since the first Report and Order by the Federal Communications Commission (FCC) authorized the unlicensed use of ultra wideband (UWB) which must meet the emission masks on February 14, 2002 [1], both industry and academia have paid much attention to R&D of commercial UWB systems. Among UWB system design, the UWB antenna is the key component. Recently, a considerable amount of researches have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017