Harvesting murine alveolar macrophages and evaluating cellular activation induced by polyanhydride nanoparticles.
نویسندگان
چکیده
Biodegradable nanoparticles have emerged as a versatile platform for the design and implementation of new intranasal vaccines against respiratory infectious diseases. Specifically, polyanhydride nanoparticles composed of the aliphatic sebacic acid (SA), the aromatic 1,6-bis(p-carboxyphenoxy)hexane (CPH), or the amphiphilic 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) display unique bulk and surface erosion kinetics and can be exploited to slowly release functional biomolecules (e.g., protein antigens, immunoglobulins, etc.) in vivo. These nanoparticles also possess intrinsic adjuvant activity, making them an excellent choice for a vaccine delivery platform. In order to elucidate the mechanisms governing the activation of innate immunity following intranasal mucosal vaccination, one must evaluate the molecular and cellular responses of the antigen presenting cells (APCs) responsible for initiating immune responses. Dendritic cells are the principal APCs found in conducting airways, while alveolar macrophages (AMɸ) predominate in the lung parenchyma. AMɸ are highly efficient in clearing the lungs of microbial pathogens and cell debris. In addition, this cell type plays a valuable role in the transport of microbial antigens to the draining lymph nodes, which is an important first step in the initiation of an adaptive immune response. AMɸ also express elevated levels of innate pattern recognition and scavenger receptors, secrete pro-inflammatory mediators, and prime naïve T cells. A relatively pure population of AMɸ (e.g., greater than 80%) can easily be obtained via lung lavage for study in the laboratory. Resident AMɸ harvested from immune competent animals provide a representative phenotype of the macrophages that will encounter the particle-based vaccine in vivo. Herein, we describe the protocols used to harvest and culture AMɸ from mice and examine the activation phenotype of the macrophages following treatment with polyanhydride nanoparticles in vitro.
منابع مشابه
Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using "pathogen-like" amphiphilic polyanhydride nanoparticles.
C-type lectin receptors (CLRs) offer unique advantages for tailoring immune responses. Engagement of CLRs regulates antigen presenting cell (APC) activation and promotes delivery of antigens to specific intracellular compartments inside APCs for efficient processing and presentation. In these studies, we have designed an approach for targeted antigen delivery by decorating the surface of polyan...
متن کاملHemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity
H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upo...
متن کاملExposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats
With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 ...
متن کاملSpecific Surface Modifications of Silica Nanoparticles Diminish Inflammasome Activation and In Vivo Expression of Selected Inflammatory Genes
Silica (SiO₂) nanoparticles (NPs) usage includes, but is not limited to, industrial and biomedical applications. Toxic effects of SiO₂ NPs have been explored either in vitro or in vivo, assessing different surface modifications to reduce their harmful effects. Here, murine bone marrow-derived dendritic (BMDC) and a mouse model of mild allergic inflammation were used to study inflammasome activa...
متن کاملSignificance of Persistent Inflammation in Respiratory Disorders Induced by Nanoparticles
Pulmonary inflammation, especially persistent inflammation, has been found to play a key role in respiratory disorders induced by nanoparticles in animal models. In inhalation studies and instillation studies of nanomaterials, persistent inflammation is composed of neutrophils and alveolar macrophages, and its pathogenesis is related to chemokines such as the cytokine-induced neutrophil chemoat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 64 شماره
صفحات -
تاریخ انتشار 2012