Thermal conductivity of nanoparticle suspensions

نویسندگان

  • Shawn A. Putnam
  • David G. Cahill
  • Paul V. Braun
  • Frederick Seitz
  • Robert G. Shimmin
چکیده

We describe an optical beam deflection technique for measurements of the thermal diffusivity of fluid mixtures and suspensions of nanoparticles with a precision of better than 1%. Our approach is tested using the thermal conductivity of ethanol-water mixtures; in nearly pure ethanol, the increase in thermal conductivity with water concentration is a factor of 2 larger than predicted by effective medium theory. Solutions of C60–C70 fullerenes in toluene and suspensions of alkanethiolate-protected Au nanoparticles were measured to maximum volume fractions of 0.6% and 0.35 vol %, respectively. We do not observe anomalous enhancements of the thermal conductivity that have been reported in previous studies of nanofluids; the largest increase in thermal conductivity we have observed is 1.3% ±0.8% for 4 nm diam Au particles suspended in ethanol. © 2006 American Institute of Physics. DOI: 10.1063/1.2189933

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study on the Thermal Conductivity of Carbon Nanotubes/Oil (TECHNICAL NOTE)

[if gte mso 9]> In the present work, the thermal conductivity coefficients of nanoparticle-oil suspensions for two types of carbon nanotubes, single-walled (SWNTs) and multi-walled (MWNTs) carbon nanotubes at 0.1, 0.2 and 0.3 wt.% were measured by a modified transient hot wire method (KD2-pro thermal property meter). Results showed that the thermal conductivity of suspension containing single-...

متن کامل

Optimization of Thermal Conductivity of Al2O3 Nanofluid by Using ANN and GRG Methods

Common heat transfer fluids such as water, ethylene glycol, and engine oil have limited heat transfer capabilities due to their low heat transfer properties. Nanofluids are suspensions of nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. In this study, we are to optimize and report the effects of various parameters such as the ratio of the thermal co...

متن کامل

Thermal transport in au-core polymer-shell nanoparticles.

Thermal transport in aqueous suspensions of Au-core polymer-shell nanoparticles is investigated by time-resolved measurements of optical absorption. The addition of an organic cosolvent to the suspension causes the polystyrene component of the polymer shell to swell, and this change in the microstructure of the shell increases the effective thermal conductivity of the shell by a factor of appro...

متن کامل

Stability of nanofluids in quiescent and shear flow fields

An experimental study was conducted to investigate the structural stability of ethylene glycol-based titanium dioxide nanoparticle suspensions (nanofluids) prepared by two-step method. The effects of particle concentration, fluid temperature, shear rate and shear duration were examined. Particle size and thermal conductivity measurements in quiescent state indicated the existence of aggregates ...

متن کامل

Effects of Particle Surface Charge, Species, Concentration, and DispersionMethod on the Thermal Conductivity of Nanofluids

The purpose of this experimental study is to evaluate the effects of particle species, surface charge, concentration, preparation technique, and base fluid on thermal transport capability of nanoparticle suspensions (nanofluids). The surface charge was varied by changing the pH value of the fluids. The alumina (Al2O3) and copper oxide (CuO) nanoparticles were dispersed in deionized (DI) water a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006