Unsupervised Segmentation of Hyperspectral Images through Evolved Cellular Automata
نویسندگان
چکیده
The problem of segmenting multidimensional images, in particular hyperspectral images, is still an open subject. The main issue is related to preserving the multidimensional character of the signals throughout the segmentation process avoiding an early projection onto a 2D plane with the consequent loss of the wealth of information these images provide. The approach followed here is based on the use of cellular automata (CA) and their emergent behavior over the hyperspectral cube in order to achieve this objective. Using cellular automata for segmentation in hyperspectral images is not new, but most approaches to this problem involve hand designing the rules for the automata. Additionally, most references found are just extensions of one or three-dimensional methods to multidimensional images, and, as a consequence, average out the spectral information present. The main contributions of this paper is the study of the application of evolutionary methods to produce the CA rule sets that result in the best possible segmentation properties under different circumstances without resorting to any form of projection until the information is presented to the user. The procedure has been tested over synthetic and real hyperspectral images.
منابع مشابه
Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملUnsupervised Segmentation of Multispectral Images with Cellular Automata
Multispectral images acquired by satellites are used to study phenomena on the Earth’s surface. Unsupervised classification techniques analyze multispectral image content without considering prior knowledge of the observed terrain; this is done using techniques which group pixels that have similar statistics of digital level distribution in the various image channels. In this paper, we propose ...
متن کامل