A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices

نویسندگان

  • Zhongxiao Jia
  • Datian Niu
چکیده

The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix A. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of A are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of A are almost linearly dependent. Furthermore, harmonic Ritz vectors may converge irregularly and even may fail to converge. Based on the refined projection principle for large matrix eigenproblems due to the first author, we propose a refined harmonic Lanczos bidiagonalization method that takes the Rayleigh quotients of the harmonic Ritz vectors as approximate singular values and extracts the best approximate singular vectors, called the refined harmonic Ritz approximations, from the given subspaces in the sense of residual minimizations. The refined approximations are shown to converge to the desired singular vectors once the subspaces are sufficiently good and the Rayleigh quotients converge. An implicitly restarted refined harmonic Lanczos bidiagonalization algorithm (IRRHLB) is developed. We study how to select the best possible shifts, and suggest refined harmonic shifts that are theoretically better than the harmonic shifts used within the implicitly restarted Lanczos bidiagonalization algorithm (IRHLB). We propose a novel procedure that can numerically compute the refined harmonic shifts efficiently and accurately. Numerical experiments are reported that compare IRRHLB with five other algorithms based on the Lanczos bidiagonalization process. It appears that IRRHLB is at least competitive with them and can be considerably more efficient when computing the smallest singular triplets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A harmonic Lanczos bidiagonalization method for computing interior singular triplets of large matrices

This paper proposes a harmonic Lanczos bidiagonalization method for computing some interior singular triplets of large matrices. It is shown that the approximate singular triplets are convergent if a certain Rayleigh quotient matrix is uniformly bounded and the approximate singular values are well separated. Combining with the implicit restarting technique, we develop an implicitly restarted ha...

متن کامل

An Implicitly Restarted Lanczos Bidiagonalization Method for Computing Smallest Singular Triplets

We describe the development of a method for the efficient computation of the smallest singular values and corresponding vectors for large sparse matrices [4]. The method combines state-of-the-art techniques that make it a useful computational tool appropriate for large scale computations. The method relies upon Lanczos bidiagonalization (LBD) with partial reorthogonalization [6], enhanced with ...

متن کامل

Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization

A matrix-free algorithm, IRLANB, for the efficient computation of the smallest singular triplets of large and possibly sparse matrices is described. Key characteristics of the approach are its use of Lanczos bidiagonalization, implicit restarting, and harmonic Ritz values. The algorithm also uses a deflation strategy that can be applied directly on Lanczos bidiagonalization. A refinement postpr...

متن کامل

Augmented Implicitly Restarted Lanczos Bidiagonalization Methods

New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the ne...

متن کامل

An Implicitly Restarted Block Lanczos Bidiagonalization Method Using Leja Shifts

In this paper, we propose an implicitly restarted block Lanczos bidiagonalization (IRBLB) method for computing a few extreme or interior singular values and associated right and left singular vectors of a large matrix A. Our method combines the advantages of a block routine, implicit shifting, and the application of Leja points as shifts in the accelerating polynomial. The method neither requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2010