Derivative superconvergent points in finite element solutions of harmonic functions- A theoretical justification
نویسنده
چکیده
Finite element derivative superconvergent points for harmonic functions under local rectangular mesh are investigated. All superconvergent points for the finite element space of any order that is contained in the tensorproduct space and contains the intermediate family can be predicted. In the case of the serendipity family, results are given for finite element spaces of order below 6. The results justify the computer findings of Babuška, et al.
منابع مشابه
Derivative superconvergent points in finite element solutions of Poisson's equation for the serendipity and intermediate families - a theoretical justification
Finite element derivative superconvergent points for the Poisson equation under local rectangular mesh (in the two dimensional case) and local brick mesh (in the three dimensional situation) are investigated. All superconvergent points for the finite element space of any order that is contained in the tensor-product space and contains the intermediate family can be predicted. In case of the ser...
متن کاملSuperconvergence of Discontinuous Finite Element Solutions for Transient Convection-diffusion Problems
We present a study of the local discontinuous Galerkin method for transient convection-di usion problems in one dimension. We show that p degree piecewise polynomial discontinuous nite element solutions of convection-dominated problems are O( xp+2) superconvergent at Radau points. For di usion-dominated problems, the solution's derivative is O( xp+2) superconvergent at the roots of the derivati...
متن کاملSolution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملDerivative Superconvergence of Equilateral Triangular Finite Elements
Derivative superconvergent points under locally equilateral triangular mesh for both the Poisson and Laplace equations are reported. Our results are conclusive. For the Poisson equation, symmetry points are only superconvergent points for cubic and higher order elements. However, for the Laplace equation, most of superconvergent points are not symmetry points, which are reported for the first t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002