Structural Stabilization of Tissue for Embryo Phenotyping Using Micro-CT with Iodine Staining
نویسندگان
چکیده
The International Mouse Phenotyping Consortium has been established to conduct large-scale phenotyping of the approximately 23,000 single-gene knockout mice generated by the International Knockout Mouse Consortium to investigate the role of each gene in the mouse genome. Of the generated mouse lines, 30% are predicted to be embryonic lethal, requiring the implementation of imaging techniques and analysis tools specific to late gestation mouse embryo phenotyping. A well-adopted technique combines the use of iodinated contrast solutions and micro-computed tomography imaging. This simple iodine immersion technique provides superior soft-tissue contrast enhancement, however, the hypertonic nature of iodine promotes dehydration causing moderate to severe tissue deformation. Here, we combine the stabilizing properties of a hydrogel mesh with the enhanced contrast properties of iodine. The protocol promotes cross linking of tissue through formaldehyde fixation and the linking of hydrogel monomers to biomolecules. As a result, the hydrogel supports tissue structure and preserves its conformation taking advantage of iodine-enhanced soft tissue contrast to produce high quality mouse embryo images with minimal tissue distortion. Hydrogel stabilization substantially reduces intersample anatomical variation of mature mouse embryos subjected to iodine preparation protocols. A 20% and 50% reduction in intersample variation of normalized brain and lung volume is achieved through hydrogel stabilization, as well as a 20% reduction in variation in overall embryo anatomy as measured through image registration methods. This increases the sensitivity of computer automated analysis to reveal significant anatomical differences between mutant and wild-type mice.
منابع مشابه
Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining.
BACKGROUND Microcomputed tomography (micro-CT) has been used extensively in research to generate high-resolution 3D images of calcified tissues in small animals nondestructively. It has been especially useful for the characterization of skeletal mutations but limited in its utility for the analysis of soft tissue such as the cardiovascular system. Visualization of the cardiovascular system has ...
متن کاملEvaluation of peripheral nerve regeneration through biomaterial conduits via micro‐CT imaging
OBJECTIVE Hollow nerve conduits made of natural or synthetic biomaterials are used clinically to aid regeneration of peripheral nerves damaged by trauma or disease. To support healing, conduit lumen patency must be maintained until recovery occurs. New methods to study conduit structural integrity would provide an important means to optimize conduits in preclinical studies. We explored a novel ...
متن کاملA quantitative comparison of micro-CT preparations in Dipteran flies
X-ray-based 3D-imaging techniques have gained fundamental significance in research areas ranging from taxonomy to bioengineering. There is demand for the characterisation of species-specific morphological adaptations, micro-CT (μCT) being the method of choice in small-scale animals. This has driven the development of suitable staining techniques to improve absorption-based tissue contrast. A qu...
متن کاملThree-dimensional non-destructive soft-tissue visualization with X-ray staining micro-tomography
Low inherent contrast in soft tissues has been limiting the use of X-ray absorption micro-computed tomography (micro-CT) to access high-resolution structural information of animal organs. The staining agents used in micro-CT to improve the contrast fail in providing high-quality images of whole organs of animals due to diffusion problems of the staining agent into the sample. We demonstrate a s...
متن کاملDev107722 1..9
The International Mouse Phenotyping Consortium (IMPC) plans to phenotype 20,000 single-gene knockout mice to gain an insight into gene function. Approximately 30% of these knockout mouse lines will be embryonic or perinatal lethal. The IMPC has selected threedimensional (3D) imaging to phenotype thesemouse lines at relevant stages of embryonic development in an attempt to discover the cause of ...
متن کامل