Spectral Projected Gradient Method with Inexact Restoration for Minimization with Nonconvex Constraints
نویسندگان
چکیده
This work takes advantage of the spectral projected gradient direction within the inexact restoration framework to address nonlinear optimization problems with nonconvex constraints. The proposed strategy includes a convenient handling of the constraints, together with nonmonotonic features to speed up convergence. The numerical performance is assessed by experiments with hard-spheres problems, pointing out that the inexact restoration framework provides the adequate environment for the extension of the spectral projected gradient method for general nonlinearly constrained optimization.
منابع مشابه
Spectral projected gradient and variable metric methods for optimization with linear inequalities
A family of variable metric methods for convex constrained optimization was introduced recently by Birgin, Mart́ınez and Raydan. One of the members of this family is the Inexact Spectral Projected Gradient (ISPG) method for minimization with convex constraints. At each iteration of these methods a strictly convex quadratic function with convex constraints must be (inexactly) minimized. In the ca...
متن کاملInexact Spectral Projected Gradient Methods on Convex Sets
A new method is introduced for large scale convex constrained optimization. The general model algorithm involves, at each iteration, the approximate minimization of a convex quadratic on the feasible set of the original problem and global convergence is obtained by means of nonmonotone line searches. A specific algorithm, the Inexact Spectral Projected Gradient method (ISPG), is implemented usi...
متن کاملA General Framework for a Class of First Order Primal-dual Algorithms for Tv Minimization
We generalize the primal-dual hybrid gradient (PDHG) algorithm proposed by Zhu and Chan in [M. Zhu, and T. F. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, UCLA CAM Report [08-34], May 2008], draw connections to similar methods and discuss convergence of several special cases and modifications. In particular, we point out a convergence result fo...
متن کاملSmoothing Projected Gradient Method and Its Application to Stochastic Linear Complementarity Problems
A smoothing projected gradient (SPG) method is proposed for the minimization problem on a closed convex set, where the objective function is locally Lipschitz continuous but nonconvex, nondifferentiable. We show that any accumulation point generated by the SPG method is a stationary point associated with the smoothing function used in the method, which is a Clarke stationary point in many appli...
متن کاملInexact restoration method for minimization problems arising in electronic structure calculations
An inexact restoration (IR) approach is presented to solve a matricial optimization problem arising in electronic structure calculations. The solution of the problem is the closed-shell density matrix and the constraints are represented by a Grassmann manifold. One of the mathematical and computational challenges in this area is to develop methods for solving the problem not using eigenvalue ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 31 شماره
صفحات -
تاریخ انتشار 2009