Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies
نویسندگان
چکیده
This paper is a contribution to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and ∆-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics – namely the class of algebras defined over the real unit interval, the rational unit interval, the hyperreals (all ultrapowers of the real unit interval), the strict hyperreals (only ultrapowers giving a proper extension of the real unit interval) and finite chains, respectively – and we survey the known completeness methods and results for prominent logics. We also obtain new interesting relations between the real, rational and (strict) hyperreal semantics, and good characterizations for the completeness with respect to the semantics of finite chains. Finally, all completeness properties and distinguished semantics are also considered for the first-order versions of the logics where a number of new results are proved.
منابع مشابه
Algebraic Semantics for t-norm Based Fuzzy Logic
In this talk we present from an algebraic point of view the general framework of core and ∆-core fuzzy logics. We consider three types of completeness with respect to any semantics of linearly orderd algebras and we give useful algebraic characterizations of these completeness. Moreover we distinguish some special semantics for these logics and we survey the known completeness methods and resul...
متن کاملOn expansions of WNM t-norm based logics with truth-constants
This paper focuses on completeness results about generic expansions of propositional Weak Nilpotent Minimum (WNM) logics with truth-constants. Indeed, we consider algebraic semantics for expansions of these logics with a set of truth-constants {r | r ∈ C}, for a suitable countable C ⊆ [0, 1], and provide a full description of completeness results when (i) the t-norm is a Weak Nilpotent Minimum ...
متن کاملSTONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES
$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...
متن کاملOn modal extensions of Product fuzzy logic
In this paper we study modal extensions of Product fuzzy logic with both relational semantics based on Kripke structures with crisp accessibility relations and algebraic semantics, when the underlying product fuzzy logic is expanded with truth-constants, the ∆ operator and with two infinitary inference rules. We provide completeness results for both kinds of semantics. Finally, we also consider...
متن کامل10 Triangular norm-based mathematical fuzzy logics
In this chapter, we consider particular classes of infinite-valued propositional logics which are strongly related to t-norms as conjunction connectives and to the real unit interval as set of their truth degrees, and which have their implication connectives determined via an adjointness condition. Such systems have in the last ten years been of considerable interest, and the topic of important...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 160 شماره
صفحات -
تاریخ انتشار 2009