Bystander central memory but not effector memory CD8+ T cells suppress allograft rejection.
نویسندگان
چکیده
Memory T cells respond faster and more vigorously than their naive counterparts and are critical for adaptive immunity. However, it is unknown whether and how memory T cells react in the face of irrelevant Ags. It is generally accepted that bystander memory T cells are neutral in immune responsiveness. In this study, we present the first evidence that bystander central memory (TCM), but not effector memory (TEM), CD8+ T cells suppress allograft rejection as well as T cell proliferation in the draining lymph nodes (DLN) of recipient mice. Both bystander TCM and naive T cells, but fewer TEM cells, migrated to DLN, whereas TCM cells exhibited faster turnover than their naive counterparts, suggesting that bystander TCM cells have an advantage over their naive counterparts in suppression. However, bystander TEM cells migrated to inflammatory graft sites, but not DLN, and yet failed to exert their suppression. These findings indicate that bystander memory T cells need to migrate to lymph nodes to exert their suppression by inhibiting responder T cell activation or homeostatic proliferation. Moreover, the suppression mediated by bystander TCM cells was largely dependent on IL-15, as IL-15 was required for their homeostatic proliferation and TCM-mediated suppression of allograft rejection. This suppression also required the presence of TGFbeta1, as TCM cells expressed TGFbeta1 while neutralizing TGFbeta1 abolished their suppression. Thus, bystander TCM, but not TEM, CD8+ T cells are potent suppressors rather than bystanders. This new finding will have an impact on cellular immunology and may have clinic implications for tolerance induction.
منابع مشابه
CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism.
CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft r...
متن کاملSuppression of memory CD8 T cell generation and function by tryptophan catabolism.
Dendritic cell-derived indoleamine 2,3-dioxygenase (IDO) suppresses naive T cell proliferation and induces their apoptosis by catalyzing tryptophan, and hence is essential for the maintenance of peripheral tolerance. However, it is not known whether memory T cells are subject to the regulation by IDO-mediated tryptophan catabolism, as memory T cells respond more rapidly and vigorously than thei...
متن کاملTargeting CD8 T-Cell Metabolism in Transplantation
Infiltration of effector CD8 T cells plays a major role in allograft rejection, and increases in memory and terminally differentiated effector memory CD8 T cells are associated with long-term allograft dysfunction. Alternatively, CD8 regulatory T cells suppress the inflammatory responses of effector lymphocytes and induce allograft tolerance in animal models. Recently, there has been a renewed ...
متن کاملLocation and time-dependent control of rejection by regulatory T cells culminates in a failure to generate memory T cells.
Adaptive CD25(+)CD4(+) regulatory T cells (Treg) can be induced following exposure to alloantigen and may function alongside naturally occurring Treg to suppress allograft rejection when present in sufficient numbers. However, the location of the Treg as they function in vivo and the mechanisms used to control donor-reactive T cells remains ill-defined. In this study, we used a CD8(+) TCR trans...
متن کاملNK cells delay allograft rejection in lymphopenic hosts by downregulating the homeostatic proliferation of CD8+ T cells.
T cells present in lymphopenic environments undergo spontaneous (homeostatic) proliferation resulting in expansion of the memory T cell pool. Homeostatically generated memory T cells protect the host against infection but can cause autoimmunity and allograft rejection. Therefore, understanding the mechanisms that regulate homeostatic T cell proliferation is germane to clinical settings in which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 180 1 شماره
صفحات -
تاریخ انتشار 2008