Physiological transport forces govern drug distribution for stent-based delivery.
نویسندگان
چکیده
BACKGROUND The first compounds considered for stent-based delivery, such as heparin, were chosen on the basis of promising tissue culture and animal experiments, and yet they have failed to stop restenosis clinically. More recent compounds, such as paclitaxel, are of a different sort, being hydrophobic in nature, and their effects after local release seem far more profound. This dichotomy raises the question of whether drugs that have an effect when released from a stent do so because of differences in biology or differences in physicochemical properties and targeting. METHODS AND RESULTS We applied continuum pharmacokinetics to examine the effects of transport forces and device geometry on the distribution of stent-delivered hydrophilic and hydrophobic drugs. We found that stent-based delivery invariably leads to large concentration gradients, with drug concentrations ranging from nil to several times the mean tissue concentration over a few micrometers. Concentration variations were a function of the Peclet number (Pe), the ratio of convective to diffusive forces. Although hydrophobic drugs exhibited greater variability than hydrophilic drugs, they achieved higher mean concentrations and remained closer to the intima. Inhomogeneous strut placement influenced hydrophilic drugs more negatively than hydrophobic drugs, dramatically affecting local concentrations without changing mean concentrations. CONCLUSIONS Because local concentrations and gradients are inextricably linked to biological effect, our results provide a potential explanation for the variable success of stent-based delivery. We conclude that mere proximity of delivery devices to tissues does not ensure adequate targeting, because physiological transport forces cause local concentrations to deviate significantly from mean concentrations.
منابع مشابه
Arterial ultrastructure influences transport of locally delivered drugs.
An incomplete understanding of the transport forces and local tissue structures that modulate drug distribution has hampered local pharmacotherapies in many organ systems. These issues are especially relevant to arteries, where stent-based delivery allows fine control of locally directed drug release. Local delivery produces tremendous drug concentration gradients and although these are in part...
متن کاملAn advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries
Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...
متن کاملSpecific and General Binding in Arterial Drug Delivery
Drug-eluting stents have emerged as the most effective method for treating restenosis following percutaneous coronary interventions. This thesis investigates how drugs with similar physiochemical properties but different specific binding targets yield drastically different tissue transport, retention and ultimately efficacy independent of their putative biological effects. Our central hypothesi...
متن کاملArterial paclitaxel distribution and deposition.
Successful implementation of local arterial drug delivery requires transmural distribution of drug. The physicochemical properties of the applied compound, which govern its transport and tissue binding, become as important as the mode of delivery. Hydrophilic compounds distribute freely but are cleared rapidly. Hydrophobic drugs, insoluble in aqueous solutions, bind to fixed tissue elements, po...
متن کاملLuminal Flow Amplifies Stent-Based Drug Deposition in Arterial Bifurcations
BACKGROUND Treatment of arterial bifurcation lesions using drug-eluting stents (DES) is now common clinical practice and yet the mechanisms governing drug distribution in these complex morphologies are incompletely understood. It is still not evident how to efficiently determine the efficacy of local drug delivery and quantify zones of excessive drug that are harbingers of vascular toxicity and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 104 5 شماره
صفحات -
تاریخ انتشار 2001