Ecosystem Consequences of Tree Monodominance for Nitrogen Cycling in Lowland Tropical Forest
نویسندگان
چکیده
Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.
منابع مشابه
An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest.
Tropical forests are renowned for their high diversity, yet in many sites a single tree species accounts for the majority of the individuals in a stand. An explanation for these monodominant forests remains elusive, but may be linked to mycorrhizal symbioses. We tested three hypotheses by which ectomycorrhizas might facilitate the dominance of the tree, Oreomunnea mexicana, in montane tropical ...
متن کاملEcological Impact on Nitrogen and Phosphorus Cycling of a Widespread Fast-growing Leguminous Tropical Forest Plantation Tree Species, Acacia mangium
Symbiotic nitrogen fixation is one of the major pathways of N input to forest ecosystems, enriching N availability, particularly in lowland tropics. Recently there is growing concern regarding the wide areas of fast-growing leguminous plantations that could alter global N2O emissions. Here, we highlight substantially different N and phosphorus utilization and cycling at a plantation of Acacia m...
متن کاملREVIEW AND SYNTHESIS Relationships am ong net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis
Tropical rain forests play a dominant role in global biosphere-atmosphere C O 2 exchange. A lthough climate and nutrient availability regulate net primary production (NPP) and decomposition in aU terrestrial ecosystems, the nature and extent o f such controls in tropical forests remain poorly resolved. We conducted a meta-analysis o f carbon-nutrient-chmate relationships in 113 sites across the...
متن کاملRelationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.
Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the ...
متن کاملStable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest
Foliar nitrogen (N) isotope ratios (dN) are used as a proxy for N-cycling processes, including the ‘‘openness’’ of the N cycle and the use of distinct N sources, but there is little experimental support for such proxies in lowland tropical forest. To address this, we examined the dN values of soluble soil N and canopy foliage of four tree species after 13 years of factorial N and P addition to ...
متن کامل