Strongly hyperpolarized gas from parahydrogen by rational design of ligand-capped nanoparticles

نویسندگان

  • Ramesh Sharma
  • Louis-S Bouchard
چکیده

The production of hyperpolarized fluids in continuous mode would broaden substantially the range of applications in chemistry, materials science, and biomedicine. Here we show that the rational design of a heterogeneous catalyst based on a judicious choice of metal type, nanoparticle size and surface decoration with appropriate ligands leads to highly efficient pairwise addition of dihydrogen across an unsaturated bond. This is demonstrated in a parahydrogen-induced polarization (PHIP) experiment by a 508-fold enhancement (±78) of a CH(3) proton signal and a corresponding 1219-fold enhancement (±187) of a CH(2) proton signal using nuclear magnetic resonance (1H-NMR). In contrast, bulk metal catalyst does not show this effect due to randomization of reacting dihydrogen. Our approach results in the largest gas-phase NMR signal enhancement by PHIP known to date. Sensitivity-enhanced NMR with this technique could be used to image microfluidic reactions in-situ, to probe nonequilibrium thermodynamics or for the study of metabolic reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propane-d6 Heterogeneously Hyperpolarized by Parahydrogen

Long-lived spin states of hyperpolarized propane-d6 gas were demonstrated following pairwise addition of parahydrogen gas to propene-d6 using heterogeneous parahydrogen-induced polarization (HET-PHIP). Hyperpolarized molecules were synthesized using Rh/TiO2 solid catalyst with 1.6 nm Rh nanoparticles. Hyperpolarized (PH ∼ 1%) propane-d6 was detected at high magnetic field (9.4 T) spectroscopica...

متن کامل

Construction of a Carbon Paste Electrode Based on Novel Thiolated Ligand Capped Gold Nanoparticles for Determination of Trace Amounts of Mercury(II)

In the present study, a simple electrochemical sensor for trace determination of Hg(II) ions in aqueous solutions was introduced. The proposed sensor was designed by incorporation of the 4-methyl-piperidine-carbodithioate capped gold nanoparticles (GNPs) into the carbon paste electrode (CPE), which provides a remarkably improved sensitivity for stripping voltammetric determination of Hg(II). Di...

متن کامل

New Azo-Schiff Base Ligand Capped Silver and Cadmium Sulfide Nanoparticles Preparation, Characterization, Antibacterial and Antifungal Activities

A novel azo-Schiff base ligand (L) was prepared by reacting 2-hydroxy-5-(pyridine-4-yldiazenyl) benzaldehyde with 1,2-phenylenediamine. Moreover, Silver nanoparticles (Ag-NPs) and Cadmium sulfide nanoparticles (CdS-NPs) were prepared by employing azo-Schiff base ligand (L) as capping and reducing agent. The solid-state fluorescence spectroscopy was used to investigate the interaction between L ...

متن کامل

Parahydrogen enhanced NMR reveals correlations in selective hydrogenation of triple bonds over supported Pt catalyst.

Parahydrogen induced polarization using heterogeneous catalysis can produce impurity-free hyperpolarized gases and liquids, but the comparatively low signal enhancements and limited scope of substrates that can be polarized pose significant challenges to this approach. This study explores the surface processes affecting the disposition of the bilinear spin order derived from parahydrogen in the...

متن کامل

Demonstration of Heterogeneous Parahydrogen Induced Polarization Using Hyperpolarized Agent Migration from Dissolved Rh(I) Complex to Gas Phase

Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012