Extracellular Polymeric Substances (EPS) of Freshwater Biofilms Stabilize and Modify CeO2 and Ag Nanoparticles
نویسندگان
چکیده
Streams are potential receiving compartments for engineered nanoparticles (NP). In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS) that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag) under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size) and AgNO3 to EPS (10 mg/L) over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr) acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+.
منابع مشابه
Adsorption of Extracellular Polymeric Substances Derived from S. cerevisiae to Ceria Nanoparticles and the Effects on Their Colloidal Stability
In order to understand the adsorption preferences of extracellular polymeric substances (EPS) components derived from fungus Saccharomyces cerevisiae on sparingly soluble CeO2 nanoparticles (CeNPs), the adsorption experiments of the EPS including organic matter with low molecular weight have been performed at pH 6.0 at room temperature (25 ± 1 ◦C). The subsequent effects of the coating on the d...
متن کاملMixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions
Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. Th...
متن کاملThe effects of silver nanoparticles on intact wastewater biofilms
Silver nanoparticles (Ag-NPs) have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission el...
متن کاملOptimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2
Background: Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such a...
متن کاملEffect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton
Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira ...
متن کامل