Parallel MCMC with generalized elliptical slice sampling
نویسندگان
چکیده
Probabilistic models are conceptually powerful tools for finding structure in data, but their practical effectiveness is often limited by our ability to perform inference in them. Exact inference is frequently intractable, so approximate inference is often performed using Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we want to efficiently simulate many steps of a rapidly mixing Markov chain which leaves the target distribution invariant. Of particular interest in this regard is how to take advantage of multi-core computing to speed up MCMC-based inference, both to improve mixing and to distribute the computational load. In this paper, we present a parallelizable Markov chain Monte Carlo algorithm for efficiently sampling from continuous probability distributions that can take advantage of hundreds of cores. This method shares information between parallel Markov chains to build a scale-location mixture of Gaussians approximation to the density function of the target distribution. We combine this approximation with a recently developed method known as elliptical slice sampling to create a Markov chain with no step-size parameters that can mix rapidly without requiring gradient or curvature computations.
منابع مشابه
Generalizing Elliptical Slice Sampling for Parallel MCMC
Probabilistic models are conceptually powerful tools for finding structure in data, but their practical effectiveness is often limited by our ability to perform inference in them. Exact inference is frequently intractable, so approximate inference is often performed using Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we want to efficiently simulate many steps ...
متن کاملElliptical Slice Sampling with Expectation Propagation
Markov Chain Monte Carlo techniques remain the gold standard for approximate Bayesian inference, but their practical issues — including onerous runtime and sensitivity to tuning parameters — often lead researchers to use faster but typically less accurate deterministic approximations. Here we couple the fast but biased deterministic approximation offered by expectation propagation with elliptic...
متن کاملParallel multivariate slice sampling
Slice sampling provides an easily implemented method for constructing a Markov chain Monte Carlo (MCMC) algorithm. However, slice sampling has two major drawbacks: (i) it requires repeated evaluation of likelihoods for each update, which can make it impractical when evaluations are expensive or as the number of evaluations grows (geometrically) with the dimension of the slice sampler, and (ii) ...
متن کاملGradient-free MCMC methods for dynamic causal modelling
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-bas...
متن کاملSampling schemes for generalized linear Dirichlet process random effects models
We evaluate MCMC sampling schemes for a variety of link functions in generalized linear models with Dirichlet process random effects. First, we find that there is a large amount of variability in the performance of MCMC algorithms, with the slice sampler typically being less desirable than either a Kolmogorov-Smirnov mixture representation or a MetropolisHastings algorithm. Second, in fitting t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 15 شماره
صفحات -
تاریخ انتشار 2014