Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity.

نویسندگان

  • Seungil Ro
  • Sung Jin Hwang
  • Melodie Muto
  • William Keith Jewett
  • Nick J Spencer
چکیده

It has been assumed that in piebald lethal mice that develop megacolon, impaired colonic motor activity is restricted to the aganglionic distal colon. Peristaltic mechanical recordings, immunohistochemistry, and quantitative PCR were used to investigate whether regions of the colon, other than the aganglionic segment, may also show anatomical modifications and dysfunctional colonic motor activity. Contrary to expectations, colonic migrating motor complexes (MMCs) were absent along the whole colon of piebald lethal homozygote mice and severely impaired in heterozygote siblings. Aganglionosis was detected not only in the distal colon of piebald homozygote lethal mice (mean length: 20.4 +/- 2.1 mm) but also surprisingly in their heterozygote siblings (mean length: 12.4 +/- 1.1 mm). Unlike homozygote lethal mice, piebald heterozygotes showed no signs of megacolon. Interestingly, mRNA expression for PGP 9.5 was also dramatically reduced (by 71-99%) throughout the entire small and large bowel in both homozygote lethal and heterozygous littermates (by 67-87%). Histochemical staining confirmed a significant reduction in myenteric ganglia along the whole colon. In summary, the piebald mutation in homozygote lethal and heterozygote siblings is associated with dramatic reductions in myenteric ganglia throughout the entire colon and not limited to the distal colon as originally thought. Functionally, this results in an absence or severe impairment of colonic MMC activity in both piebald homozygote lethal and heterozygote siblings, respectively. The observation that piebald heterozygotes have an aganglionic distal colon (mean length: 12 mm) but live a normal murine life span without megacolon suggests that aganglionosis >12 mm and the complete absence of colonic MMCs may be required before any symptoms of megacolon arise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nav1.9 channel regulates colonic motility in mice

The colonic migrating motor complex (CMMC) is a major pattern of motility that is entirely generated and organized by the enteric nervous system. We have previously demonstrated that the Nav1.9 channel underlies a tetrodotoxin-resistant sodium current which modulates the excitability of enteric neurons. The aim of this study was to observe the effect of loss of the Nav1.9 channel in enteric neu...

متن کامل

P 119: Role of Gut Bacteria on Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease that is the most common type of dementia.AD includes 60_80% of dementia and most people with AD have more than 65 years old.AD causes losing neuronal activity by abnormal proteins. Plaques of beta-amyloid and tangles of “tau” protein can lead to AD. Recently evidence has found that AD may come from outside of central nerv...

متن کامل

Pathophysiology of Chronic Constipation and Ibs*

The pathophysiology of chronic constipation and irritable bowel syndrome (IBS) involves consideration of disturbances in colonic sensorimotor activity, often resulting from disordered extrinsic and/or intrinsic innervations. The mechanisms by which normal colonic activity is altered to cause constipation or IBS are complex, as are the enteric neuropathologic changes that are present in some pat...

متن کامل

Possible Involvement of Glutamatergic, Adrenergic and Dopaminergic System in Methylphenidate - induced Motor Activity and Mood-related Alterations in Rats

Background and Objective: Methylphenidate (MPH), as a central nervous system stimulant, is often used to manage hyperactive disorders. The literature is scarce regarding the behavioral consequences of chronic MPH treatment and the role of involved receptors. Thus, in the current study involved receptors in MPH induced-anxiety, depression and motor activity disorders were evaluated. Materials a...

متن کامل

Use of Genetically Encoded Calcium Indicators (GECIs) Combined with Advanced Motion Tracking Techniques to Examine the Behavior of Neurons and Glia in the Enteric Nervous System of the Intact Murine Colon

Genetically encoded Ca(2+) indicators (GECIs) have been used extensively in many body systems to detect Ca(2+) transients associated with neuronal activity. Their adoption in enteric neurobiology has been slower, although they offer many advantages in terms of selectivity, signal-to-noise and non-invasiveness. Our aims were to utilize a number of cell-specific promoters to express the Ca(2+) in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 290 4  شماره 

صفحات  -

تاریخ انتشار 2006