Comparing data mining methods with logistic regression in childhood obesity prediction
نویسندگان
چکیده
The epidemiological question of concern here is " can young children at risk of obesity be identified from their early growth records? " Pilot work using logistic regression to predict overweight and obese children demonstrated relatively limited success. Hence we investigate the incorporation of non-linear interactions to help improve accuracy of prediction; by comparing the result of logistic regression with those of six mature data mining techniques. The contributions of this paper are as follows: a) a comparison of logistic regression with six data mining techniques: specifically, for the prediction of overweight and obese children at 3 years using data recorded at birth, 6 weeks, 8 months and 2 years respectively; b) improved accuracy of prediction: prediction at 8 months accuracy is improved very slightly, in this case by using neural networks, whereas for prediction at 2 years obtained accuracy is improved by over 10%, in this case by using Bayesian methods. It has also been shown that incorporation of non-linear interactions could be important in epidemiological prediction, and that data mining techniques are becoming sufficiently well established to offer the medical research community a valid alternative to logistic regression.
منابع مشابه
Predicting the Type of Nanostructure Using Data Mining Techniques and Multinomial Logistic Regression
Nanotechnology and nanomaterials have a promised future in different aspects of modern life that involve medicine, environment, space, energy, electronics, security, and many others. While the applications of nanomaterials seem to be limitless, new challenges are also being posed. With regard to the type of one-dimensional nanostructure of Cadmium Selenide (CdSe), there are three possible morph...
متن کاملComparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses
Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...
متن کاملEditorial for the special issue of knowledge discovery and management in biomedical information systems
The rapid growth of research and development using different advanced techniques, e.g. AI and Machine Learning, in biological and medical information systems has drawn worldwide attention on the management of knowledge discovered in, for instance, gene databases and public healthcare portals. However, challenges remain from various fundamental issues, e.g. difficulty in data acquisition and het...
متن کاملA Study to Improve the Response in Email Campaigning by Comparing Data Mining Segmentation Approaches in Aditi Technologies
Email marketing is increasingly recognized as an effective Internet marketing tool. In this study, a questionnaire is constructed and distributed to a sample of 146 prospects of Aditi Technologies to find the factors associated with higher response rates. The collected data is analyzed using Factor Analysis and the 11 factors, From Line, Subject Line, Personalization of the subject line, Timing...
متن کاملArtificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
Background: Diabetes and hypertension are important non-communicable diseases and their prevalence is important for health authorities. The aim of this study was to determine the predictive precision of the bivariate Logistic Regression (LR) and Artificial Neutral Network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods: This cross-sectional study was performed with 12000 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Systems Frontiers
دوره 11 شماره
صفحات -
تاریخ انتشار 2009