Numerical Solutions of a Boundary Value Problem for the Anomalous Diffusion Equation with the Riesz Fractional Derivative
نویسندگان
چکیده
In this paper we present in one-dimensional space a numerical solution of a partial differential equation of fractional order. This equation describes a process of anomalous diffusion. The process arises from the interactions within the complex and non-homogeneous background. We presented a numerical method which bases on the finite differences method. We considered pure initial and boundaryinitial value problems for the equation with the Riesz-Feller fractional derivative. In the final part of this paper sample results of simulation were shown.
منابع مشابه
Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator
In this paper, we present a numerical solution to an ordinary differential equation of a fractional order in one-dimensional space. The solution to this equation can describe a steady state of the process of anomalous diffusion. The process arises from interactions within complex and non-homogeneous background. We present a numerical method which is based on the finite differences method. We co...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملNumerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملExiststence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation
In this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...
متن کامل