Activated Oncogenic Pathway Modifies Iron Network in Breast Epithelial Cells: A Dynamic Modeling Perspective

نویسندگان

  • Julia Chifman
  • Seda Arat
  • Zhiyong Deng
  • Erica Lemler
  • James C. Pino
  • Leonard A. Harris
  • Michael A. Kochen
  • Carlos F. Lopez
  • Steven A. Akman
  • Frank M. Torti
  • Suzy V. Torti
  • Reinhard C. Laubenbacher
چکیده

Dysregulation of iron metabolism in cancer is well documented and it has been suggested that there is interdependence between excess iron and increased cancer incidence and progression. In an effort to better understand the linkages between iron metabolism and breast cancer, a predictive mathematical model of an expanded iron homeostasis pathway was constructed that includes species involved in iron utilization, oxidative stress response and oncogenic pathways. The model leads to three predictions. The first is that overexpression of iron regulatory protein 2 (IRP2) recapitulates many aspects of the alterations in free iron and iron-related proteins in cancer cells without affecting the oxidative stress response or the oncogenic pathways included in the model. This prediction was validated by experimentation. The second prediction is that iron-related proteins are dramatically affected by mitochondrial ferritin overexpression. This prediction was validated by results in the pertinent literature not used for model construction. The third prediction is that oncogenic Ras pathways contribute to altered iron homeostasis in cancer cells. This prediction was validated by a combination of simulation experiments of Ras overexpression and catalase knockout in conjunction with the literature. The model successfully captures key aspects of iron metabolism in breast cancer cells and provides a framework upon which more detailed models can be built.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells

Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...

متن کامل

Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway

Naringenin is a natural compound with potential anti-cancer effects against several cancer types.  Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...

متن کامل

بررسی خون سازگاری سطح اپی تلیال پرده آمنیون در مقایسه با رگ صناعی (پلی تترافلورواتیلن)

Background and purpose: Amniotic membrane (AM) is a proper candidate for vascular tissue engineering. The aim of this study was to evaluate the hemocompatibility of the epithelial surface of the AM. Materials and methods: In this study, we assessed the effects of the epithelial surface of the AM on blood coagulation system by measuring activated partial thromboplastin time (aPTT), prothromb...

متن کامل

The Role of the DNA Damage Response in Breast Cancer PRINCIPAL INVESTIGATOR:

We have reported the use of the RCAS-TVA system to model sporadic tumorigenesis upon oncogenic activation in somatic mammary epithelial cells in the mouse. Here we review the advantages of this approach as compared to conventional mouse models with transgenic oncogene expression. We also in detail describe the RCAS-TVAmethod for introducing genes into somatic mammary epithelial cells engineered...

متن کامل

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017