Selective activation induced cleavage of the NR2B subunit by calpain.
نویسندگان
چکیده
Although activation of calcium-activated neutral protease (calpain) by the NMDA receptor has been suggested to play critical roles in synaptic modulation and neurologic disease, the nature of its substrates has not been completely defined. In this study, we examined the ability of calpain to cleave the NMDA receptor in cultured hippocampal neurons. Activation of the NMDA receptor by agonist application led to rapid calpain-specific proteolysis of spectrin and decreased levels of NR2A/2B subunits. Cleavage of the NR2A/2B subunit created a 115 kDa product that retained the ability to bind 125I-MK-801 and is predicted to be active. Increases in levels of this product appeared within 5 min of NMDA receptor activation and were stable for periods of >30 min. Subtype-specific antibodies demonstrated that the NR2B subunit was cleaved in these primary cultures, but the NR2A subunit was not. An inhibitor of calpain blocked both the decrease of intact NR2B and the increase of the low molecular weight form, whereas neither caspase nor cathepsin inhibitors had an effect on these events. Cell surface biotinylation experiments demonstrated that the 115 kDa fragment remained on the cell surface. This NR2B fragment was also found in the rat hippocampus after transient forebrain ischemia, showing that this process also occurs in vivo. This suggests that calpain-mediated cleavage of the NR2B subunit occurs in neurons and gives rise to active NMDA receptor forms present on the cell surface after excitotoxic glutamatergic stimulation. Such forms could contribute to excitotoxicity and synaptic remodeling.
منابع مشابه
Neurobiology of Disease Human Immunodeficiency Virus (HIV)-Induced Neurotoxicity: Roles for the NMDA Receptor Subtypes 2A and 2B and the Calcium-Activated Protease Calpain by a CSF-derived HIV-1 Strain
Neuronal damage in human immunodeficiency virus type 1 (HIV-1) infection in the brain is thought to occur at least in part through NMDA receptor (NMDAR) excitation initiated by soluble neurotoxins from HIV-infected brain macrophages. Furthermore, brain regions enriched in NMDAR-2A (NR2A) and NMDAR-2B (NR2B) subunits, such as the hippocampus, are particularly vulnerable. Using cultured rat hippo...
متن کاملInteractions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor.
The calcium-dependent protease calpain cleaves the NMDA receptor 2 (NR2) subunit of the NMDA receptor both in vitro and in vivo and thus potentially modulates NMDA receptor function and turnover. We examined the ability of postsynaptic density-95 (PSD-95) protein to alter the calpain-mediated cleavage of NR2A and NR2B. Coexpression of PSD-95 with NMDA receptors in human embryonic kidney 293 cel...
متن کاملPostsynaptic density-95 (PSD-95) and calcineurin control the sensitivity of N-methyl-D-aspartate receptors to calpain cleavage in cortical neurons.
The N-methyl-D-aspartate receptor (NMDAR) is a Ca(2+)-permeable glutamate receptor mediating many neuronal functions under normal and pathological conditions. Ca(2+) influx via NMDARs activates diverse intracellular targets, including Ca(2+)-dependent protease calpain. Biochemical studies suggest that NR2A and NR2B subunits of NMDARs are substrates of calpain. Our physiological data showed that...
متن کاملDevelopmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors.
Excitotoxicity is generally studied in dissociated neurons, cultured hippocampal slices, or intact animals. However, the requirements of dissociated neurons or cultured slices to use prenatal or juvenile rats seriously limit the advantages of these systems, whereas the complexity of intact animals prevents detailed molecular investigations. In the present experiments, we studied developmental c...
متن کاملTyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord contributes to chronic visceral pain in rats
The roles of spinal N-methyl-d-aspartic acid receptor 2B (NR2B) subunit in central sensitization of chronic visceral pain were investigated. A rat model with irritable bowel syndrome (IBS) was established by colorectal distention (CRD) on post-natal days 8-14. Responses of the external oblique muscle of the abdomen to CRD were measured to evaluate the sensitivity of visceral pain in rats. The s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 36 شماره
صفحات -
تاریخ انتشار 2003