Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells
نویسندگان
چکیده
The enormous diversity of the naive T cell repertoire is instrumental in generating an immune response to virtually any foreign antigen that can be processed into peptides that bind to MHC molecules. The low frequency of antigen-specific naive T cells, their high activation threshold, and the constrains of antigen-processing and presentation have hampered analysis of naive repertoires to complex protein antigens. In this study, libraries of polyclonally expanded naive T cells were used to determine frequency and antigen dose-response of human naive CD4(+) T cells specific for a variety of antigens and to isolate antigen-specific T cell clones. In the naive repertoire, T cells specific for primary antigens, such as KLH and Bacillus anthracis protective antigen, and for recall antigens, such as tetanus toxoid, cytomegalovirus, and Mycobacterium tuberculosis purified protein derivative, were detected at frequencies ranging from 5 to 170 cells per 10(6) naive T cells. Antigen concentrations required for half-maximal response (EC50) varied over several orders of magnitude for different naive T cells. In contrast, in the memory repertoire, T cells specific for primary antigens were not detected, whereas T cells specific for recall antigens were detected at high frequencies and displayed EC50 values in the low range of antigen concentrations. The method described may find applications for evaluation of vaccine candidates, for testing antigenicity of therapeutic proteins, drugs, and chemicals, and for generation of antigen-specific T cell clones for adoptive cellular immunotherapy.
منابع مشابه
Influence of CD4+CD25+ regulatory T cells on low/high-avidity CD4+ T cells following peptide vaccination.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in rel...
متن کاملCD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells
The peripheral Foxp3(+) Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4(+) T cells can be readily converted to Foxp3(+) iTreg in vitro, and memory CD4(+) T cells are resistant to conversion. In this study, we investigated the induction of Foxp3(+) T cells from various CD4(+) T-cell subsets in human peripheral blood. Though na...
متن کاملB and T Lymphocyte Attenuator is a Target of miR-155 during Naive CD4+ T Cell Activation
Background: MicroRNA-155 (miR-155) is upregulated during T cell activation, but the exact mechanisms by which it influences CD4+ T cell activation remain unclear. Objective: To examine whether the B and T lymphocyte attenuator (BTLA) is a target of miR-155 during naïve CD4+ T cell activation. Methods: Firefly luciferase reporter plasmids pEZX-MT01-wild-type-BTLA and pEZX-MT01-mutant-BTLA were ...
متن کاملMultiple glycines in TCR alpha-chains determine clonally diverse nature of human T cell memory to influenza A virus.
Detailed assessment of how the structural properties of T cell receptors affect clonal repertoires of Ag-specific cells is a prerequisite for a better understanding of human antiviral immunity. Herein we examine the alpha TCR repertoires of CD8 T cells reactive against the influenza A viral epitope M1(58-66), restricted by HLA-A2.1. Using molecular cloning, we systematically studied the impact ...
متن کاملHuman telomerase reverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex class II-restricted epitopes.
An effective tumor vaccine may require the induction of both CTL and T-helper (Th) cell responses against tumor-associated antigens. Human telomerase reverse transcriptase (hTERT) is highly expressed in >85% of cancer cells and thus is a potential target for tumor vaccines. We therefore sought to identify promiscuous Th epitopes in hTERT, which can be presented by more than one MHC class II all...
متن کامل