Sensory nerve inactivation by resiniferatoxin improves insulin sensitivity in male obese Zucker rats.
نویسندگان
چکیده
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.
منابع مشابه
Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats.
OBJECTIVE It has earlier been demonstrated that capsaicin-induced desensitization improves insulin sensitivity in normal rats. However, whether increased capsaicin-sensitive nerve activity precedes the onset of insulin resistance in diet-induced obesity--and therefore might be involved in the pathophysiology--is not known. Further, it is of relevance to investigate whether capsaicin desensitiza...
متن کاملTestosterone supplementation in male obese Zucker rats reduces body weight and improves insulin sensitivity but increases blood pressure.
Androgen levels are lower in obese men as compared with normal weight individuals. However, there are no safety data regarding the chronic use of androgen supplements in middle-aged men. The present study was undertaken to determine the cardiovascular and metabolic effects of chronic (10 weeks) testosterone treatment in male obese Zucker rats, starting at 22 weeks of age, when testosterone leve...
متن کاملObesity Testosterone Supplementation in Male Obese Zucker Rats Reduces Body Weight and Improves Insulin Sensitivity But Increases Blood Pressure
Androgen levels are lower in obese men as compared with normal weight individuals. However, there are no safety data regarding the chronic use of androgen supplements in middle-aged men. The present study was undertaken to determine the cardiovascular and metabolic effects of chronic (10 weeks) testosterone treatment in male obese Zucker rats, starting at 22 weeks of age, when testosterone leve...
متن کاملImproved metabolic status and insulin sensitivity in obese fatty (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats treated with the thiazolidinedione, MCC-555.
1. We examined the effect of chronic (21 days) oral treatment with the thiazolidinedione, MCC-555 ((+)-5-[[6-(2-fluorbenzyl)-oxy-2-naphy]methyl]-2,4-thiazo lid inedione) on metabolic status and insulin sensitivity in obese (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats which display an impaired glucose tolerance (IGT) or overt diabetic symptoms, respectively. 2. MCC-555 treatment to o...
متن کاملNebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat.
Insulin resistance is associated with obesity and may be accompanied by left ventricular diastolic dysfunction and myocardial remodeling. Decreased insulin metabolic signaling and increased oxidative stress may promote these maladaptive changes. In this context, the beta-blocker nebivolol has been reported to improve insulin sensitivity, increase endothelial NO synthase activity, and reduce NAD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 288 6 شماره
صفحات -
تاریخ انتشار 2005