Everolimus-induced human keratinocytes toxicity is mediated by STAT3 inhibition

نویسندگان

  • Kazuhiro Yamamoto
  • Atsushi Uda
  • Akira Mukai
  • Kazuhiko Yamashita
  • Manabu Kume
  • Hiroo Makimoto
  • Toshinori Bito
  • Chikako Nishigori
  • Takeshi Hirano
  • Midori Hirai
چکیده

BACKGROUND Mammalian target of rapamycin (mTOR) inhibitors are associated with dermatological adverse events. The chief aim of this study was to examine the relation between the signal transducer and activator of transcription 3 (STAT3) protein and the dermatological adverse events associated with the mTOR inhibitor everolimus. METHODS We evaluated the effects of STAT3 activity and related signal transduction activities on everolimus-induced cell growth inhibition in the human keratinocyte HaCaT cell line via a WST-8 assay, and on signal transduction mechanisms involved in everolimus treatments via a western blot analysis. Apoptosis was evaluated using an imaging cytometric assay. RESULTS The cell growth inhibitory effects of everolimus were enhanced by stattic or STA-21, which are selective inhibitors of STAT3, treatment in HaCaT cells, although such effects were not observed in Caki-1 and HepG2 cells. Phosphorylation at tyrosine 705 of STAT3 was decreased by treatment with everolimus in a dose-dependent manner in HaCaT cells; in contrast, phosphorylation at serine 727 was not decreased by everolimus, but slightly increased. Furthermore, we found that pretreatment of p38 MAPK inhibitor and transfection with constitutively active form of STAT3 in HaCaT cells resisted the cytostatic activity of everolimus. CONCLUSIONS These findings suggest that STAT3 activity may be a biomarker of everolimus-induced dermatological toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of Toxicity of Sorafenib and Sunitinib for Human Keratinocytes with Inhibition of Signal Transduction and Activator of Transcription 3 (STAT3)

Hand-foot skin reaction is a most common multi-kinase inhibitor-related adverse event. This study aimed to examine whether the toxicity of sorafenib and sunitinib for human keratinocytes was associated with inhibiting signal transduction and activator of transcription 3 (STAT3). We studied whether STAT3 activity affects sorafenib- and sunitinib-induced cell growth inhibition in HaCaT cells by W...

متن کامل

Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes

The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. More...

متن کامل

Photochemopreventive effect of pomegranate fruit extract on UVA-mediated activation of cellular pathways in normal human epidermal keratinocytes.

UVA is the major portion (90-99%) of solar radiation reaching the surface of the earth and has been described to lead to formation of benign and malignant tumors. UVA-mediated cellular damage occurs primarily through the release of reactive oxygen species and is responsible for immunosuppression, photodermatoses, photoaging and photocarcinogenesis. Pomegranate fruit extract (PFE) possesses stro...

متن کامل

IL-17A and IFN-γ Synergistically Induce RNase 7 Expression via STAT3 in Primary Keratinocytes

Human keratinocytes produce several antimicrobial peptides and proteins (AMP) which contribute to the protection of human skin against infection. RNase 7 is a major AMP involved in cutaneous defense with a high expression in keratinocytes and a broad spectrum of antimicrobial activity. The cytokine IL-17A has been recently identified as a potent inducer of several AMP in keratinocytes. Since th...

متن کامل

Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes.

Pemphigus vulgaris (PV) is an epithelial blistering disease caused by autoantibodies to the desmosomal cadherin desmoglein 3 (DSG3). Glucocorticoids improve disease within days by increasing DSG3 gene transcription, although the mechanism for this observation remains unknown. Here, we show that DSG3 transcription in keratinocytes is regulated by Stat3. Treatment of primary human keratinocytes (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013