PHD and TFIIS-Like Domains of the Bye1 Transcription Factor Determine Its Multivalent Genomic Distribution
نویسندگان
چکیده
The BYpass of Ess1 (Bye1) protein is a putative S. cerevisiae transcription factor homologous to the human cancer-associated PHF3/DIDO family of proteins. Bye1 contains a Plant Homeodomain (PHD) and a TFIIS-like domain. The Bye1 PHD finger interacts with tri-methylated lysine 4 of histone H3 (H3K4me3) while the TFIIS-like domain binds to RNA polymerase (Pol) II. Here, we investigated the contribution of these structural features to Bye1 recruitment to chromatin as well as its function in transcriptional regulation. Genome-wide analysis of Bye1 distribution revealed at least two distinct modes of association with actively transcribed genes: within the core of Pol II- and Pol III-transcribed genes concomitant with the presence of the TFIIS transcription factor and, additionally, with promoters of a subset of Pol II-transcribed genes. Specific loss of H3K4me3 abolishes Bye1 association to gene promoters, but doesn't affect its binding within gene bodies. Genetic interactions suggested an essential role of Bye1 in cell fitness under stress conditions compensating the absence of TFIIS. Furthermore, BYE1 deletion resulted in the attenuation of GAL genes expression upon galactose-mediated induction indicating its positive role in transcription regulation. Together, these findings point to a bimodal role of Bye1 in regulation of Pol II transcription. It is recruited via its PHD domain to H3K4 tri-methylated promoters at early steps of transcription. Once Pol II is engaged into elongation, Bye1 binds directly to the transcriptional machinery, modulating its progression along the gene.
منابع مشابه
Structures of RNA polymerase II complexes with Bye1, a chromatin-binding PHF3/DIDO homologue.
Bypass of Ess1 (Bye1) is a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. Here we show that Bye1 binds with its TFIIS-like domain (TLD) to RNA polymerase (Pol) II, and report crystal structures of the Bye1 TLD bound to Pol II and three different Pol II-nucleic acid complexes. Like TFIIS, Bye1 binds with its TLD to the Pol II jaw and fun...
متن کاملGenomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells
RNA polymerase (Pol) III synthesizes the tRNAs, the 5S ribosomal RNA and a small number of untranslated RNAs. In vitro, it also transcribes short interspersed nuclear elements (SINEs). We investigated the distribution of Pol III and its associated transcription factors on the genome of mouse embryonic stem cells using a highly specific tandem ChIP-Seq method. Only a subset of the annotated clas...
متن کاملA sequence motif conserved in diverse nuclear proteins identifies a protein interaction domain utilised for nuclear targeting by human TFIIS
The three structural domains of transcription elongation factor TFIIS are conserved from yeast to human. Although the N-terminal domain is not needed for transcriptional activity, a similar sequence has been identified previously in other transcription factors. We found this conserved sequence, the LW motif, in another three human proteins that are predominantly nuclear localized. We investigat...
متن کاملElongation factor TFIIS contains three structural domains: solution structure of domain II.
Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. Limited proteolytic digestion showed that yeast TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III) are r...
متن کاملStructural basis for the species-specific activity of TFIIS.
Many proteins involved in eukaryotic transcription are similar in function and in sequence between organisms. Despite the sequence similarities, there are many factors that do not function across species. For example, transcript elongation factor TFIIS is highly conserved among eukaryotes, and yet the TFIIS protein from Saccharomyces cerevisiae cannot function with mammalian RNA polymerase II a...
متن کامل