A Continuous Characterization of Maximal Cliques in k-Uniform Hypergraphs
نویسندگان
چکیده
In 1965 Motzkin and Straus established a remarkable connection between the local/global maximizers of the Lagrangian of a graph G over the standard simplex ∆ and the maximal/maximum cliques of G. In this work we generalize the Motzkin-Straus theorem to k-uniform hypergraphs, establishing an isomorphism between local/global minimizers of a particular function over ∆ and the maximal/maximum cliques of a k-uniform hypergraph. This theoretical result opens the door to a wide range of further both practical and theoretical applications, concerning continuous-based heuristics for the maximum clique problem on hypergraphs, as well as the discover of new bounds on the clique number of hypergraphs. Moreover we show how the continuous optimization task related to our theorem, can be easily locally solved by mean of a dynamical system.
منابع مشابه
A generalization of the Motzkin-Straus theorem to hypergraphs
In 1965,Motzkin and Straus established a remarkable connection between the global maxima of the Lagrangian of a graph G over the standard simplex and the clique number of G. In this paper, we provide a generalization of the Motzkin–Straus theorem to k-uniform hypergraphs (k-graphs). Specifically, given a k-graph G, we exhibit a family of (parameterized) homogeneous polynomials whose local (glob...
متن کاملCounting Small Cliques in 3-uniform Hypergraphs
Many applications of Szemerédi’s Regularity Lemma for graphs are based on the following counting result. If G is an s-partite graph with partition V (G) = ⋃s i=1 Vi, |Vi| = m for all i ∈ [s], and all pairs (Vi, Vj ), 1 i < j s, are -regular of density d, then G contains (1± f( ))d s 2 ms cliques Ks, provided < (d), where f( ) tends to 0 as tends to 0. Guided by the regularity lemma for 3-unifor...
متن کاملOn the maximal ideal space of extended polynomial and rational uniform algebras
Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...
متن کاملFractional clique decompositions of dense graphs and hypergraphs
Our main result is that every graph G on n ≥ 10r vertices with minimum degree δ(G) ≥ (1−1/10r)n has a fractional Kr-decomposition. Combining this result with recent work of Barber, Kühn, Lo and Osthus leads to the best known minimum degree thresholds for exact (non-fractional) F -decompositions for a wide class of graphs F (including large cliques). For general k-uniform hypergraphs, we give a ...
متن کاملErdős-Hajnal-type theorems in hypergraphs
The Erdős-Hajnal conjecture states that if a graph on n vertices is H-free, that is, it does not contain an induced copy of a given graph H, then it must contain either a clique or an independent set of size n, where δ(H) > 0 depends only on the graph H. Except for a few special cases, this conjecture remains wide open. However, it is known that a H-free graph must contain a complete or empty b...
متن کامل