A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem
نویسنده
چکیده
We consider two-dimensional overdamped double-well systems perturbed by white noise. In the weak-noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP} must terminate on the saddle between the two wells. However, as the parameters of a symmetric double-well system are varied, a unique MPEP may bifurcate into two equally likely MPEPs. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. We quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our construction relies on a new scaling theory, which yields "critical exponents" describing weak-noise behavior at the bifurcation point, near the saddle.
منابع مشابه
Noise-induced escape from bifurcating attractors: Symplectic approach in the weak-noise limit.
The effect of noise is studied in one-dimensional maps undergoing transcritical, tangent, and pitchfork bifurcations. The attractors of the noiseless map become metastable states in the presence of noise. In the weak-noise limit, a symplectic two-dimensional map is associated with the original one-dimensional map. The consequences of their noninvertibility on the phase-space structures are disc...
متن کاملScaling laws for bubbling bifurcations
We establish rigorous scaling laws for the average bursting time for bubbling bifurcations of an invariant manifold, assuming the dynamics within the manifold to be uniformly hyperbolic. This type of global bifurcation appears in nearly synchronized systems, and is conjectured to be typical among those breaking the invariance of an asymptotically stable hyperbolic invariant manifold. We conside...
متن کاملSpherically Symmetric Solutions in a New Braneworld Massive Gravity Theory
In this paper, a combination of the braneworld scenario and covariant de Rham-Gabadadze-Tolley (dRGT) massive Gravity theory is proposed. In this setup, the five-dimensional bulk graviton is considered to be massive. The five dimensional nonlinear ghost-free massive gravity theory affects the 3-brane dynamics and the gravitational potential on the brane. Following the solutions with spherical s...
متن کاملCritical fluctuations of noisy period-doubling maps
We extend the theory of quasipotentials in dynamical systems by calculating an exact potential for the critical fluctuations of pitchfork bifurcations of period-doubling maps in the weak noise limit. These far-from-equilibrium fluctuations are described by finite-size mean field theory, placing their static properties in the same universality class as the Ising model on a complete graph. We dem...
متن کاملA note on symmetric duality in vector optimization problems
In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".
متن کامل