3D Line Segment Based Model Generation by RGB-D Camera for Camera Pose Estimation

نویسندگان

  • Yusuke Nakayama
  • Hideo Saito
  • Masayoshi Shimizu
  • Nobuyasu Yamaguchi
چکیده

In this paper, we propose a novel method for generating 3D line segment based model from an image sequence taken with a RGB-D camera. Constructing 3D geometrical representation by 3D model is essential for model based camera pose estimation that can be performed by corresponding 2D features in images with 3D features of the captured scene. While point features are mostly used as such features for conventional camera pose estimation, we aim to use line segment features for improving the performance of the camera pose estimation. In this method, using RGB images and depth images of two continuous frames, 2D line segments from the current frame and 3D line segments from the previous frame are corresponded. The 2D-3D line segment correspondences provide camera pose of the current frame. All of 2D line segments are finally back-projected to the world coordinate based on the estimated camera pose for generating 3D line segment based model of the target scene. In experiments, we confirmed that the proposed method can successfully generate line segment based models, while 3D models based on the point features often fail to successfully represent the target scene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AR Visualization of Thermal 3D Model by Hand-held Cameras

In this paper, we propose a system for AR visualization of thermal distribution on the environment. Our system is based on color 3D model and thermal 3D model of the target scene generated by KinectFusion using a thermal camera coupled with an RGB-D camera. In off-line phase, Viewpoint Generative Learning (VGL) is applied to the colored 3D model for collecting its stable keypoints descriptors. ...

متن کامل

RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information

In the study of SLAM problem using an RGB-D camera, depth information and visual information as two types of primary measurement data are rarely tightly coupled during refinement of camera pose estimation. In this paper, a new method of RGB-D camera SLAM is proposed based on extended bundle adjustment with integrated 2D and 3D information on the basis of a new projection model. First, the geome...

متن کامل

Real-time marker-less multi-person 3D pose estimation in RGB-Depth camera networks

This paper proposes a novel system to estimate and track the 3D poses of multiple persons in calibrated RGBDepth camera networks. The multi-view 3D pose of each person is computed by a central node which receives the single-view outcomes from each camera of the network. Each single-view outcome is computed by using a CNN for 2D pose estimation and extending the resulting skeletons to 3D by mean...

متن کامل

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

WSDF: Weighting of Signed Distance Function for Camera Motion Estimation in RGB-D Data

With the recent advent of the cost-effective Kinect, which can capture real-time high-resolution RGB and visual depth information, has opened an opportunity to significantly increase the capabilities of many automated vision based recognition including object/action classification, 3D reconstruction, etc... In this work, we address the camera motion estimation which is an important phase in 3D ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014