Minibatch and Parallelization for Online Large Margin Structured Learning
نویسندگان
چکیده
Online learning algorithms such as perceptron and MIRA have become popular for many NLP tasks thanks to their simpler architecture and faster convergence over batch learning methods. However, while batch learning such as CRF is easily parallelizable, online learning is much harder to parallelize: previous efforts often witness a decrease in the converged accuracy, and the speedup is typically very small (∼3) even with many (10+) processors. We instead present a much simpler architecture based on “mini-batches”, which is trivially parallelizable. We show that, unlike previous methods, minibatch learning (in serial mode) actually improves the converged accuracy for both perceptron and MIRA learning, and when combined with simple parallelization, minibatch leads to very significant speedups (up to 9x on 12 processors) on stateof-the-art parsing and tagging systems.
منابع مشابه
Scalable Large-Margin Online Learning for Structured Classification
We investigate large-margin online learning algorithms for large-scale structured classification tasks, focusing on a structured-output extension of MIRA, the multi-class classification algorithm of Crammer and Singer [5]. The extension approximates the parameter updates in MIRA using k-best structural decoding. We evaluate the algorithm on several sequential classification tasks, showing that ...
متن کاملPerceptron-like Algorithms and Generalization Bounds for Learning to Rank
Learning to rank is a supervised learning problem where the output space is the space of rankings but the supervision space is the space of relevance scores. We make theoretical contributions to the learning to rank problem both in the online and batch settings. First, we propose a perceptron-like algorithm for learning a ranking function in an online setting. Our algorithm is an extension of t...
متن کاملA Generic Online Parallel Learning Framework for Large Margin Models
To speed up the training process, many existing systems use parallel technology for online learning algorithms. However, most research mainly focus on stochastic gradient descent (SGD) instead of other algorithms. We propose a generic online parallel learning framework for large margin models, and also analyze our framework on popular large margin algorithms, including MIRA and Structured Perce...
متن کاملOnline Relative Margin Maximization for Statistical Machine Translation
Recent advances in large-margin learning have shown that better generalization can be achieved by incorporating higher order information into the optimization, such as the spread of the data. However, these solutions are impractical in complex structured prediction problems such as statistical machine translation. We present an online gradient-based algorithm for relative margin maximization, w...
متن کاملMr. MIRA: Open-Source Large-Margin Structured Learning on MapReduce
We present an open-source framework for large-scale online structured learning. Developed with the flexibility to handle cost-augmented inference problems such as statistical machine translation (SMT), our large-margin learner can be used with any decoder. Integration with MapReduce using Hadoop streaming allows efficient scaling with increasing size of training data. Although designed with a f...
متن کامل