Bifurcation analysis of an inductorless chaos generator using 1D piecewise smooth map

نویسندگان

  • Laura Gardini
  • Fabio Tramontana
  • Soumitro Banerjee
چکیده

Bifurcation analysis of an inductorless chaos generator using 1D piecewise smooth map Laura Gardini a,∗, Fabio Tramontana b, Soumitro Banerjee c,d a Università degli Studi di Urbino, Department of Economics, Society, Politics, Via Saffi 42, 61029 Urbino, Italy b Università degli Studi di Pavia, Department of Economics and Business, Via S. Felice 5, 27100 Pavia, Italy c Indian Institute of Science Education & Research – Kolkata, Mohanpur Campus, Nadia 741 252, India d King Abdulaziz University, Jeddah, Saudi Arabia

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit.

In recent years, the study of chaotic and complex phenomena in electronic circuits has been widely developed due to the increasing number of applications. In these studies, associated with the use of chaotic sequences, chaos is required to be robust (not occurring only in a set of zero measure and persistent to perturbations of the system). These properties are not easy to be proved, and numeri...

متن کامل

Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps

We recall three well-known theorems related to the simplest codimension-one bifurcations occurring in discrete time dynamical systems, such as the fold, flip and Neimark–Sacker bifurcations, and analyze these bifurcations in presence of certain degeneracy conditions, when the above mentioned theorems are not applied. The occurrence of such degenerate bifurcations is particularly important in pi...

متن کامل

An Analysis of Route to Chaos for Piecewise Smooth Systems Submitted to nonsmooth Transitions

In this paper, a mathematical analysis of a possible way to chaos (in the sense of Li and Yorke) for bounded piecewise smooth systems of dimension three submitted to nonsmooth transitions is proposed. This study is based on period doubling method applied to the relied Poincaré map defined on a Poincaré section chosen in the neighborhood of the bifurcation point and transverse to the switching m...

متن کامل

Local and Global bifurcations in Three-Dimensional, Continuous, Piecewise Smooth Maps

In this work, we study the dynamics of a three-dimensional, continuous, piecewise smooth map. Much of the nontrivial dynamics of this map occur when its fixed point or periodic orbit hits the switching manifold resulting in the so-called border collision bifurcation. We study the local and global bifurcation phenomena resulting from such borderline collisions. The conditions for the occurrence ...

متن کامل

Invariant Measures for the n-Dimensional Border Collision Normal Form

The border collision normal form is a continuous piecewise affine map of R n with applications in piecewise smooth bifurcation theory. We show that these maps have absolutely continuous invariant measures for an open set of parameter space and hence that the attractors have Haus-dorff (fractal) dimension n. If n = 2 the attractors have topological dimension two, i.e. they contain open sets, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2014