Seismic reflector imaging using internal multiples with Marchenko-type equations

نویسندگان

  • Evert Slob
  • Kees Wapenaar
  • Filippo Broggini
  • Roel Snieder
چکیده

We present an imaging method that creates a map of reflection coefficients in correct one-way time with no contamination from internal multiples using purely a filtering approach. The filter is computed from the measured reflection response and does not require a background model. We demonstrate that the filter is a focusing wavefield that focuses inside a layered medium and removes all internal multiples between surface and the focus depth. The reflection response and the focusing wavefield can then be used for retrieving virtual vertical seismic profile data, thereby redatuming the source to the focus depth. Deconvolving the upgoing by the downgoing vertical seismic profile data redatums the receiver to the focus depth and gives the desired image. We then show that for oblique angles of incidence in horizontally layered media the image of the same quality as for 1D waves can be constructed. This step can be followed by a linear operation to determine velocity and density as a function of depth. Numerical simulations show the method can handle finite frequency bandwidth data and the effect of tunneling through thin layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subsalt Marchenko imaging: A Gulf of Mexico example

Marchenko redatuming allows one to use surface seismic reflection data to generate the seismic response at any point in the subsurface due to sources at the surface. Without requiring much information about the earth’s properties, the seismic response generated by Marchenko redatuming contains accurate estimates of not only the primaries, but also internal multiples. A target-oriented imaging m...

متن کامل

On the role of multiples in Marchenko imaging

Marchenko imaging can produce seismic reflection images in which artifacts related to multiples are suppressed. However, in state-of-the-art implementations, multiples do not contribute to the imaged reflectors. With an “event-byevent” deconvolution imaging approach, it is possible to use multiples in Marchenko imaging. We illustrate this for a 1D reflection response in which the primary reflec...

متن کامل

Marchenko redatuming below a complex overburden

Complex overburdens can severely distort transmitted wavefields, posing serious challenges for seismic imaging. In Marchenko redatuming, we use an iterative scheme to estimate so-called focusing functions, which can be used to redatum seismic wavefields to a specified level below the major complexities in the subsurface. Unlike in conventional redatuming methods, internal scattering in the over...

متن کامل

Marchenko imaging

Traditionally, the Marchenko equation forms a basis for 1D inverse scattering problems. A 3D extension of the Marchenko equation enables the retrieval of the Green’s response to a virtual source in the subsurface from reflection measurements at the earth’s surface. This constitutes an important step beyond seismic interferometry. Whereas seismic interferometry requires a receiver at the positio...

متن کامل

Internal multiple suppression by adaptive Marchenko redatuming

Recently, a novel iterative scheme was proposed to retrieve Green’s functions in an unknown medium from its single-sided reflection response and an estimate of the propagation velocity. In Marchenko imaging, these Green’s functions are used for seismic imaging with complete wavefields, including internal multiple reflections. In this way, common artifacts from these internal reflections are avo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014