A Graphical method for simplifying Bayesian Games
نویسندگان
چکیده
If the influence diagram (ID) depicting a Bayesian game is common knowledge to its players then additional assumptions may allow the players to make use of its embodied irrelevance statements. They can then use these to discover a simpler game which still embodies both their optimal decision policies. However the impact of this result has been rather limited because many common Bayesian games do not exhibit sufficient symmetry to be fully and efficiently represented by an ID. The tree-based chain event graph (CEG) has been developed specifically for such asymmetric problems. By using these graphs rational players can make analogous deductions, assuming the topology of the CEG as common knowledge. In this paper we describe these powerful new techniques and illustrate them through an example modelling a game played between a government department and the provider of a website designed to radicalise vulnerable people.
منابع مشابه
Deep Factor Graphs for Bayesian Prediction of High- Dimensional Games
This paper offers an extension to TrueSkill, a Bayesian method for ranking players and predicting outcomes of multiplayer games, for cases where a game is highdimensional. TrueSkill was originally developed by Microsoft Research to rank and match XBox Live players, but offers a general method for inferring player skill based almost exclusively on the win-loss outcome of a match. Although such a...
متن کاملExploiting Agent and Type Independence in Collaborative Graphical Bayesian Games
Efficient collaborative decision making is an important challenge for multiagent systems. Finding optimal joint actions is especially challenging when each agent has only imperfect information about the state of its environment. Such problems can be modeled as collaborative Bayesian games in which each agent receives private information in the form of its type. However, representing and solving...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملBayesian Action-Graph Games
Games of incomplete information, or Bayesian games, are an important gametheoretic model and have many applications in economics. We propose Bayesian action-graph games (BAGGs), a novel graphical representation for Bayesian games. BAGGs can represent arbitrary Bayesian games, and furthermore can compactly express Bayesian games exhibiting commonly encountered types of structure including symmet...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.02179 شماره
صفحات -
تاریخ انتشار 2017