The Geometry of Generic Sliding Bifurcations

نویسندگان

  • Mike R. Jeffrey
  • Stephen John Hogan
چکیده

Using the singularity theory of scalar functions, we derive a classification of sliding bifurcations in piecewise-smooth flows. These are global bifurcations which occur when distinguished orbits become tangent to surfaces of discontinuity, called switching manifolds. The key idea of the paper is to attribute sliding bifurcations to singularities in the manifold’s projection along the flow, namely to points where the projection contains folds, cusps, and two-folds (saddles and bowls). From the possible local configurations of orbits we obtain sliding bifurcations. In this way we derive a complete classification of generic one-parameter sliding bifurcations at a smooth codimension one switching manifold in n-dimensions for n ≥ 3. We uncover previously unknown sliding bifurcations, all of which are catastrophic in nature. We also describe how the method can be extended to sliding bifurcations of codimension two or higher.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Degenerate Boundary Equilibrium Bifurcations in Planar Filippov Systems

We contribute to the analysis of codimension-two bifurcations in discontinuous systems by studying all equilibrium bifurcations of 2D Filippov systems that involve a sliding limit cycle. There are only two such local bifurcations: (1) a degenerate boundary focus, which we call the homoclinic boundary focus (HBF), and (2) the boundary Hopf (BH). We prove that—besides local bifurcations of equili...

متن کامل

Grazing Bifurcations and Chaos of a Hydraulic Engine Mount

The constitutive relationships of the rubber materials that act as the main spring of a hydraulic engine mount are nonlinear. In addition to material induced nonlinearity, further nonlinearities may be introduced by mount geometry, turbulent fluid behavior, temperature, boundary conditions, decoupler action, and hysteretic behavior. In this research all influence the behavior of the system only...

متن کامل

One-Parameter bifurcations in Planar Filippov Systems

We give an overview of all codim 1 bifurcations in generic planar discontinuous piecewise smooth autonomous systems, here called Filippov systems. Bifurcations are defined using the classical approach of topological equivalence. This allows the development of a simple geometric criterion for classifying sliding bifurcations, i.e. bifurcations in which some sliding on the discontinuity boundary ...

متن کامل

Simulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy

Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...

متن کامل

Sliding bifurcations in the dynamics of mechanical systems with dry friction—remarks for engineers and applied scientists

The dynamics of mechanical systems with dry friction is affected by non-smooth bifurcations, which have been recently partially classified as ‘sliding bifurcations’. In applied science a bifurcation is usually seen as the point in which the number of fixed points and/or (quasi-)periodic solutions changes. The paper describes with several detailed examples that ‘sliding bifurcations’ do not alwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2011