A Globally Convergent Primal-Dual Interior-Point Filter Method for Nonconvex Nonlinear Programming
نویسندگان
چکیده
In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primaldual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step. Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm.
منابع مشابه
A globally convergent primal-dual interior-point three-dimensional filter method for nonlinear semidefinite programming
This paper proposes a primal-dual interior-point filter method for nonlinear semidefinite programming, which is the first multidimensional (three-dimensional) filter methods for interior-point methods, and of course for constrained optimization. A freshly new definition of filter entries is proposed, which is greatly different from those in all the current filter methods. A mixed norm is used t...
متن کاملA globally convergent primal-dual interior-point filter method for nonlinear programming
In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primaldual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are co...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملOn the Convergence of an Inexact Primal-Dual Interior Point Method for Linear Programming
The inexact primal-dual interior point method which is discussed in this paper chooses a new iterate along an approximation to the Newton direction. The method is the Kojima, Megiddo, and Mizuno globally convergent infeasible interior point algorithm The inexact variation is shown to have the same convergence properties accepting a residual in both the primal and dual Newton step equation also ...
متن کاملA Primal-Dual Exterior Point Method for Nonlinear Optimization
In this paper, primal-dual methods for general nonconvex nonlinear optimization problems are considered. The proposed methods are exterior point type methods that permit primal variables to violate inequality constraints during the iterations. The methods are based on the exact penalty type transformation of inequality constraints and use a smooth approximation of the problem to form primal-dua...
متن کامل