Computation-distributed probability hypothesis density filter
نویسندگان
چکیده
Particle probability hypothesis density filtering has become a promising approach for multi-target tracking due to its capability of handling an unknown and time-varying number of targets in a nonlinear, non-Gaussian system. However, its computational complexity linearly increases with the number of obtained observations and the number of particles, which can be very time consuming, particularly when numerous targets and clutter exist in the surveillance region. To address this issue, we present a distributed computation particle probability hypothesis density(PHD) filter for target tracking. It runs several local decomposed particle PHD filters in parallel while processing elements. Each processing element takes responsibility for a portion of particles but all measurements and provides local estimates. A central unit controls particle exchange among the processing elements and specifies a fusion rule to match and fuse the estimates from different local filters. The proposed framework is suitable for parallel implementation. Simulations verify that the proposedmethod can significantly accelerate andmaintain a comparative accuracy compared to the standard particle PHD filter.
منابع مشابه
Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملDistributed Computation Particle PHD filter
Particle probability hypothesis density filtering has become a promising means for multi-target tracking due to its capability of handling an unknown and time-varying number of targets in non-linear non-Gaussian system. However, its computational complexity grows linearly with the number of measurements and particles assigned to each target, and this can be very time consuming especially when n...
متن کاملProbability Hypothesis Density-Based Multitarget Tracking With Bistatic Range and Doppler Observations
Ronald Mahler’s Probability Hypothesis Density (PHD) provides a promising framework for the passive coherent location of targets observed via multiple bistatic radar measurements. We apply a particle filter implementation of the Bayesian PHD filter to target tracking using both range and Doppler measurements from a simple non-directional receiver that exploits non-coöperative FM radio transmitt...
متن کاملProbability Hypothesis Density Filter Based Design Concept: A Survey for Space Traffic Modeling and Control
The Probability Hypothesis Density (PHD) filter has been recently received a lot of attention by the estimation and data fusion community for its ability to provide a useful solution to the Bayesian filter problem (i.e., implementation issue). Its core foundation to other parallel directions, such as the Sequential Monte Carlo PHD, the Gaussian Mixture PHD and others, offers a viable path to pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016