DNA repair: Knockouts still mutating after first round
نویسنده
چکیده
Recent studies have investigated whether particular DNA repair pathways are involved in the somatic hypermutation mechanism that increases antibody diversity. The primary mutation mechanism still functions in mice carrying knockouts of all repair genes examined, but mismatch repair defects affect the final outcome.
منابع مشابه
Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact
Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our re...
متن کاملAlternative end joining mechanisms exhibit varying dynamics in double strand break repair
Double strand breaks (DBSs) promote multiple repair pathways and can give rise to different mutagenic processes. The propensity for activation directly affects genomic instability, with implications across health and evolution. However, the relative contribution of these mechanisms, their interplay and regulatory interactions remain to be fully elucidated. Here we present a new method to model ...
متن کاملX-Ray Induced DNA Damage and Repair in Germ Cells of PARP1−/− Male Mice
Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1(-/-) and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two...
متن کاملHuman CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair*S⃞
In G(0) and G(1), DNA double strand breaks are repaired by nonhomologous end joining, whereas in S and G(2), they are also repaired by homologous recombination. The human CtIP protein controls double strand break (DSB) resection, an event that occurs effectively only in S/G(2) and that promotes homologous recombination but not non-homologous end joining. Here, we mutate a highly conserved cycli...
متن کاملReplication of the lagging strand: a concert of at least 23 polypeptides.
DNA replication is one of the most important events in living cells, and it is still a key problem how the DNA replication machinery works in its details. A replication fork has to be a very dynamic apparatus since frequent DNA polymerase switches from the initiating DNA polymerase alpha to the processive elongating DNA polymerase delta occur at the leading strand (about 8 x 10(4) fold on both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 1998